Drug resistance is a challenge in anticancer therapy, particularly with targeted therapeutics and cytotoxic compounds. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug sensitivity prior to treatment. We therefore isolated clonal cell lines that were either sensitive or resistant to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features typically different between resistant and sensitive clones. These features were compiled to generate a morphological signature of bortezomib resistance, which correctly predicted the bortezomib treatment response in seven of ten cell lines not included in the training dataset. This signature of resistance was specific to bortezomib over other drugs targeting the ubiquitin-proteasome system. Our results provide evidence that intrinsic morphological features of drug resistance exist and establish a framework for their identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187224 | PMC |
http://dx.doi.org/10.1101/2023.05.02.539137 | DOI Listing |
Microb Genom
January 2025
mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing . This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing found in the environment and their link with human clinical isolates.
View Article and Find Full Text PDFVet Q
December 2025
Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Panjab, 144001, India.
Diabetes Mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and poses significant global health challenges. Conventional treatments, such as insulin therapy and lifestyle modifications, have shown limited efficacy in addressing the multifactorial nature of DM. Emerging evidence suggests that gut microbiota, a diverse community of microorganisms critical for metabolism and immune function, plays a pivotal role in metabolic health.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.
Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Biochemistry, KVG Medical College and Hospital, Sullia 574327, India.
Type 2 Diabetes Mellitus (T2DM) is an etiologically diverse metabolic dysfunction that, if untreated, leads to chronic hyperglycemia. Understanding the etiology of T2DM is critical, as it represents one of the most formidable medical challenges of the twenty-first century. Traditionally, insulin resistance has been recognized as the primary risk factor and a well-known consequence of type 2 diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!