Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traumatic brain injury (TBI) increases the long-term risk of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we demonstrate that protein variant pathology generated in brain tissue of an experimental TBI mouse model is similar to protein variant pathology observed in human ADbrains, and that subacute accumulation of two AD associated variants of amyloid beta (Aβ) and tau in the TBI mouse model correlated with behavioral deficits. Male C57BL/6 mice were subjected to midline fluid percussion injury or to sham injury, after which sensorimotor function (rotarod, neurological severity score), cognitive deficit (novel object recognition), and affective deficits (elevated plus maze, forced swim task) were assessed at different days post-injury (DPI). Protein pathology at 7, 14, and 28 DPI was measured in multiple brain regions using an immunostain panel of reagents selectively targeting different neurodegenerative disease-related variants of Aβ, tau, TDP-43, and alpha-synuclein. Overall, TBI resulted in sensorimotor deficits and accumulation of AD-related protein variant pathology near the impact site, both of which returned to sham levels by 14 DPI. Individual mice, however, showed persistent behavioral deficits and/or accumulation of selected toxic protein variants at 28 DPI. Behavioral outcomes of each mouse were correlated with levels of seven different protein variants in ten brain regions at specific DPI. Out of 21 significant correlations between protein variant levels and behavioral deficits, 18 were with variants of Aβ or tau. Correlations at 28 DPI were all between a single Aβ or tau variant, both of which are strongly associated with human AD cases. These data provide a direct mechanistic link between protein pathology resulting from TBI and the hallmarks of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187431 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-2865501/v1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!