Objectives: In fluoroscopy-free settings, alternative safe and quick methods for placing resuscitative endovascular balloon occlusion of the aorta (REBOA) and resuscitative endovascular balloon occlusion of the inferior vena cava (REBOVC) are needed. Ultrasound is being increasingly used to guide the placement of REBOA in the absence of fluoroscopy. Our hypothesis was that ultrasound could be used to adequately visualize the suprahepatic vena cava and guide REBOVC positioning, without significant time-delay, when compared with fluoroscopic guidance, and compared with the corresponding REBOA placement.

Methods: Nine anesthetized pigs were used to compare ultrasound-guided placement of supraceliac REBOA and suprahepatic REBOVC with corresponding fluoroscopic guidance, in terms of correct placement and speed. Accuracy was controlled by fluoroscopy. Four intervention groups: (1) fluoroscopy REBOA, (2) fluoroscopy REBOVC, (3) ultrasound REBOA and (4) ultrasound REBOVC. The aim was to carry out the four interventions in all animals. Randomization was performed to either fluoroscopic or ultrasound guidance being used first. The time required to position the balloons in the supraceliac aorta or in the suprahepatic inferior vena cava was recorded and compared between the four intervention groups.

Results: Ultrasound-guided REBOA and REBOVC placement was completed in eight animals, respectively. All eight had correctly positioned REBOA and REBOVC on fluoroscopic verification. Fluoroscopy-guided REBOA placement was slightly faster (median 14 s, IQR 13-17 s) than ultrasound-guided REBOA (median 22 s, IQR 21-25 s, p=0.024). The corresponding comparisons of the REBOVC groups were not statistically significant, with fluoroscopy-guided REBOVC taking 19 s, median (IQR 11-22 s) and ultrasound-guided REBOVC taking 28 s, median (IQR 20-34 s, p=0.19).

Conclusion: Ultrasound adequately and quickly guide the placement of supraceliac REBOA and suprahepatic REBOVC in a porcine laboratory model, however, safety issues must be considered before use in trauma patients.

Level Of Evidence: Prospective, experimental, animal study. Basic science study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186488PMC
http://dx.doi.org/10.1136/tsaco-2022-001075DOI Listing

Publication Analysis

Top Keywords

vena cava
16
inferior vena
12
rebovc
12
reboa
12
cava rebovc
8
aorta reboa
8
resuscitative endovascular
8
endovascular balloon
8
balloon occlusion
8
guide placement
8

Similar Publications

Catheter-related thrombosis (CRT) is a frequent and potentially serious complication associated with the widespread use of intravascular devices such as central venous catheters, including peripherally inserted central catheters and implantable port systems, pacemakers or implantable cardioverter-defibrillators. Although CRT management has been informed by guidelines extrapolated from lower extremity deep vein thrombosis (DVT), unique challenges remain due to the distinct anatomical, pathophysiological, and clinical characteristics of upper extremity DVT. Risk factors for CRT are multifactorial, encompassing patient-related characteristics such as cancer, prior venous thromboembolism, and infection, as well as catheter-specific factors like device type, lumens, and insertion site.

View Article and Find Full Text PDF

The three-vessel view (3VV) is a standardized transverse scanning plane used in fetal cardiac ultrasound screening to measure the absolute and relative diameters of the pulmonary artery (PA), ascending aorta (Ao), and superior vena cava, as required. The PA/Ao ratio is used to support the diagnosis of congenital heart disease (CHD). However, vascular diameters are measured manually by examiners, which causes intra- and interobserver variability in clinical practice.

View Article and Find Full Text PDF

A 28-year-old male presented to his physician with a chief complaint of fever and cough. Contrastenhanced computed tomography revealed a 17×16×8 cm heterogeneous tumor in the anterior mediastinum, as well as right heart and inferior vena cava compression due to the tumor. He was referred to our hospital for close examination and treatment.

View Article and Find Full Text PDF

Traditional mouse models for deep vein thrombosis (DVT), frequently utilized in research focused on cancer-associated thrombosis (CAT), reliably induce thrombus formation by obstructing blood flow (BF) in the inferior vena cava (IVC), which does not occur in humans. Therefore, to develop a new DVT model for CAT studies, we implanted an ameroid constrictor (AC), a hygroscopic casein C-shape device, around the IVC and aorta of immunocompromised mice. We evaluated the thrombus 3 and 8 days post-AC implantation and compared it with the traditional model 2 days post-vena cava ligation.

View Article and Find Full Text PDF

Objective: Radiographic findings to identify central venous catheter misplacement in the arteries, which can cause lethal complications, have not been fully evaluated, and its training is difficult because it is rare. The purpose of this study is to clarify radiographic findings for differentiating central venous and misplaced arterial lines using virtual chest radiographs and elucidate their usefulness in training radiologists.

Methods: This retrospective study included 150 patients (mean age, 67 [SD, ±12] years; 97 men) who underwent colon cancer surgery between January 2018 and December 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!