A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pose-Aware Attention Network for Flexible Motion Retargeting by Body Part. | LitMetric

Motion retargeting is a fundamental problem in computer graphics and computer vision. Existing approaches usually have many strict requirements, such as the source-target skeletons needing to have the same number of joints or share the same topology. To tackle this problem, we note that skeletons with different structure may have some common body parts despite the differences in joint numbers. Following this observation, we propose a novel, flexible motion retargeting framework. The key idea of our method is to regard the body part as the basic retargeting unit rather than directly retargeting the whole body motion. To enhance the spatial modeling capability of the motion encoder, we introduce a pose-aware attention network (PAN) in the motion encoding phase. The PAN is pose-aware since it can dynamically predict the joint weights within each body part based on the input pose, and then construct a shared latent space for each body part by feature pooling. Extensive experiments show that our approach can generate better motion retargeting results both qualitatively and quantitatively than state-of-the-art methods. Moreover, we also show that our framework can generate reasonable results even for a more challenging retargeting scenario, like retargeting between bipedal and quadrupedal skeletons because of the body part retargeting strategy and PAN.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2023.3277918DOI Listing

Publication Analysis

Top Keywords

motion retargeting
16
retargeting
9
pose-aware attention
8
attention network
8
flexible motion
8
retargeting body
8
body motion
8
motion
7
body
7
network flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!