Resonating Valence Bond States in an Electron-Phonon System.

Phys Rev Lett

Department of Physics, Stanford University, Stanford, California 94305, USA.

Published: May 2023

We study a simple electron-phonon model on square and triangular versions of the Lieb lattice using an asymptotically exact strong coupling analysis. At zero temperature and electron density n=1 (one electron per unit cell), for various ranges of parameters in the model, we exploit a mapping to the quantum dimer model to establish the existence of a spin-liquid phase with Z_{2} topological order (on the triangular lattice) and a multicritical line corresponding to a quantum critical spin liquid (on the square lattice). In the remaining part of the phase diagram, we find a host of charge-density-wave phases (valence-bond solids), a conventional s-wave superconducting phase, and with the addition of a small Hubbard U to tip the balance, a phonon-induced d-wave superconducting phase. Under a special condition, we find a hidden pseudospin SU(2) symmetry that implies an exact constraint on the superconducting order parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.186404DOI Listing

Publication Analysis

Top Keywords

superconducting phase
8
resonating valence
4
valence bond
4
bond states
4
states electron-phonon
4
electron-phonon system
4
system study
4
study simple
4
simple electron-phonon
4
electron-phonon model
4

Similar Publications

During the preparation of single-domain (S-D) REBaCuO (RE-123) superconducting bulks, the seed crystals can serve as templates for crystal growth, guiding the newly formed crystals to grow in a specific direction, thereby ensuring the consistency of the crystal orientation within the sample. However, the infiltration temperature is typically restricted to approximately 1050 °C when employing NdBaCuO (Nd-123) crystal seeds in the traditional top-seeded infiltration growth (TSIG) technique for producing single-domain Y-123 bulk superconductors. In the present study, to overcome the temperature limitations of the heat treatment process, the optimized YO +011 IG (011 refers to BaCuO powder) method was employed to fabricate a group of single-domain Y-123 bulks with a high-temperature infiltration (1000-1300 °C).

View Article and Find Full Text PDF

Temperature-Dependent Structural Evolution of Ruddlesden-Popper Bilayer Nickelate LaNiO.

Inorg Chem

January 2025

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.

A recent article ( 2024, 146, 7506-7514) details a pressure-temperature (-) phase diagram for the Ruddlesden-Popper bilayer nickelate LaNiO (LNO-2222) using synchrotron X-ray diffraction. This study identifies a phase transition from (#63) to (#69) within the temperature range of 104-120 K under initial pressure and attributes the 4/ (#139) space group to the structure responsible for the superconductivity of LNO-2222. Herein, we examine the temperature-dependent structural evolution of LNO-2222 single crystals at ambient pressure.

View Article and Find Full Text PDF

Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO.

View Article and Find Full Text PDF

TB18 is a newly developed high-strength metastable β-titanium alloy, commonly used in aerospace structural materials, which demands high mechanical performance. By altering the alloy's microstructure, heat treatment can affect its mechanical characteristics. The alloy was solution treated for one to four hours at 870 °C in order to examine the impact of solution treatment duration.

View Article and Find Full Text PDF

The composition of TBFS is complex. It is categorized into low (W < 5%), medium (5% < W < 20%), and high-titanium slag (W > 20%) based on Ti content. The titanium in the slag is underutilized, causing it to accumulate and contribute to environmental pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!