Healthcare experiences of mistreatment are long standing issues, with many not knowing how to recognise it and respond appropriately. Active bystander intervention (ABI) training prepares individuals with tools and strategies to challenge incidences of discrimination and harassment that they may witness. This type of training shares a philosophy that all members of the healthcare community have a role to play in tackling discrimination and healthcare inequalities. We developed an ABI training programme for undergraduate medical students, after recognising the need for this given the students' adverse experiences on clinical placements. From longitudinal feedback and robust observations of this programme, this paper intends to provide key learning lessons and guidance on how to develop, deliver and support faculty in facilitating these types of trainings. These tips are also accompanied by recommended resources and suggested examples.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0142159X.2023.2207723DOI Listing

Publication Analysis

Top Keywords

active bystander
8
bystander intervention
8
medical students
8
abi training
8
twelve tips
4
tips developing
4
developing active
4
training
4
intervention training
4
training medical
4

Similar Publications

Trophoblast cell surface antigen 2 (TROP2) is highly expressed in multiple cancers relative to normal tissues, supporting its role as a target for cancer therapy. OBI-992 is an antibody-drug conjugate (ADC) derived from a novel TROP2-targeted antibody linked to the topoisomerase 1 (TOP1) inhibitor exatecan via an enzyme-cleavable hydrophilic linker, with a drug-antibody ratio of 4. This study evaluated and compared the antitumor activity of OBI-992 with that of benchmark TROP2-targeted ADCs datopotamab deruxtecan (Dato-DXd) and sacituzumab govitecan (SG) in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Cardiff University, Cardiff, United Kingdom.

Background: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.

View Article and Find Full Text PDF

Plants lack specialized and mobile immune cells. Consequently, any cell type that encounters pathogens must mount immune responses and communicate with surrounding cells for successful defence. However, the diversity, spatial organization and function of cellular immune states in pathogen-infected plants are poorly understood.

View Article and Find Full Text PDF

Soluble factors released by peripheral blood-derived CAR-NK cells cause bystander myeloid cell activation.

Front Immunol

January 2025

Tumor Vaccine and Biotechnology Branch, Office of Cellular Therapy and Human Tissues, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration (U.S. FDA), Silver Spring, MD, United States.

Introduction: CAR-T cell therapy is associated with life-threatening inflammatory toxicities, partly due to the activation and secretion of inflammatory cytokines by bystander myeloid cells (BMCs). However, due to limited clinical data, it is unclear whether CAR-NK cells cause similar toxicities.

Methods: We characterized the soluble factors (SFs) released by activated human CAR-T and CAR-NK cells and assessed their role in BMC activation (BMCA).

View Article and Find Full Text PDF

IRF1 cooperates with ISGF3 or GAF to form innate immune de novo enhancers in macrophages.

Sci Signal

January 2025

Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.

Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!