The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11427-022-2317-6 | DOI Listing |
Ann Med
December 2025
Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.
Background: Although existing studies have identified some genetic loci associated with chronic obstructive pulmonary disease (COPD) susceptibility, many variants remain to be discovered. The aim of this study was to further explore the potential relationship between single nucleotide polymorphisms (SNPs) and COPD risk.
Methods: Nine hundred and ninety-six subjects were recruited (498 COPD cases and 498 healthy controls).
Proc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.
QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy.
Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!