Rapid shifts in pond sediment microbiota in response to high ambient temperature in a water-sediment microcosm.

Environ Sci Pollut Res Int

State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

Published: June 2023

AI Article Synopsis

  • The response of sediment microorganisms to high ambient temperatures (HTA) is not well understood, which is crucial for predicting their effects on ecosystems and climate change.
  • A laboratory experiment examined how pond sediment bacterial communities change at various temperatures (4, 10, 15, 25, 30, and 35 °C), finding significant differences in microbial structure and function at 35 °C.
  • Results showed higher CO2 emissions and unique community modularity at 35 °C, indicating that warming influences microbial networks and ecosystem functions without altering diversity or composition, likely due to horizontal gene transfer.

Article Abstract

Unlike the extensive research on the response of soil microorganisms to high ambient temperature (HTA), the response of sediment microorganisms to HTA remains unclear. Understanding the response of sediment microorganisms to HTA is important to forecast their impacts on ecosystems and climate warming under projected climate change scenarios. Against the background of climate warming and frequent high ambient temperatures in summer, we conducted a laboratory incubation experiment to clarify the unique assembly characteristics of pond sediment bacterial communities at different temperatures (4, 10, 15, 25, 30 and 35 °C). The results showed that the structure and function of the microbial community in pond sediments at 35 °C were different from those under other temperatures; the microbial community structure at 35 °C had the most large modules and an average module size. Temperature and dissolved oxygen influenced the microbial community network modularity. The CO emission rates of pond sediments at 35 °C were significantly higher than those at other temperatures. At 35 °C, heterogeneous selection was the most important assembly process. Additionally, warming altered the microbial network structure and ecosystem functioning but not the microbial diversity or community composition, which may be related to horizontal gene transfer. Revealing the rapid response of pond sediment microorganisms to HTA is important for identifying their role in nutrient cycling and assessing the ecological impacts of climate warming and high ambient temperatures on inland water sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26823-7DOI Listing

Publication Analysis

Top Keywords

high ambient
16
pond sediment
12
sediment microorganisms
12
microorganisms hta
12
climate warming
12
microbial community
12
ambient temperature
8
response sediment
8
ambient temperatures
8
temperatures 35 °c
8

Similar Publications

Piezochromic Luminescence of Pyrene Derivatives Polymorphism around Excimer Forming Processs.

Chemistry

January 2025

Northeastern University, Department of Materials Physics and Chemistry, No.11, Wenhua Road, Lane 3,Heping District, 110819, Shenyang, CHINA.

Pyrene aggregates, as classic luminescent materials, are of great interest from a scientific viewpoint owing to the development of optoelectronic materials. In this study, we designed a compound 1,4,5-triphenyl-2-(pyren-1-yl)-4,5-dihydro-1H-imidazole (IM-PY) which was achieved with two crystalline polymorphs (IMPY-G and IMPY-B). They exhibit the green emission and the blue emission, respectively, both with pyrene serving as the luminescent core.

View Article and Find Full Text PDF

Hydrogen isotope separation at exceptionally high temperature using an unsaturated organometallic complex.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Arama-ki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.

A new approach for hydrogen isotope separation using an unsaturated organometallic complex was proposed. Adsorption measurements of [Mn(dppe)(CO)(N)](BArF) (Mn-dppe) (dppe = 1,2-bis(diphenylphosphino)ethane, BArF = B[CH(3,5-CF)]) using H and D revealed a significant difference in the adsorption enthalpy of H/D at much higher room temperatures than in previous studies, with D molecules being more strongly adsorbed on unsaturated metal sites. Mixed gas adsorption isotherms were calculated at each temperature using IAST, and it was predicted that D uptake was much larger than H uptake.

View Article and Find Full Text PDF

Background: Life expectancy at age 70 has continued to rise globally over the past 30 years. However, a comprehensive assessment of the burden of COPD in older adults is lacking. We aimed to estimate the burden of COPD and its attributable risk factors among adults aged ≥70 years.

View Article and Find Full Text PDF

Ultrasound can be used to manipulate protein function and activity, as well as for targeted drug delivery, making it a powerful diagnostic and therapeutic modality with wide applications in sonochemistry, nanotechnology, and engineering. However, a general particle-based approach to ultrasound modeling remains challenging due to the significant disparity between characteristic time scales governing ultrasound propagation. In this study, we use open-boundary molecular dynamics to simulate ultrasound waves in liquid water under ambient conditions by employing supramolecular water models, i.

View Article and Find Full Text PDF

The current study assesses several water-based PVT system thermal absorber configurations. The thermal absorber in PVT system plays a vital role in efficiency evaluation as it lowers PV temperature and collects heat energy. The current study aims to discover and analyze advanced thermal absorber design by comparing well-received spiral circular absorbers and non-cooled PV with proposed semi-circular thermal absorbers with varying flow configurations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!