Phylogenetically closely related plant species often share similar trait states (phylogenetic signal), but local assembly may favor dissimilar relatives and thereby decouple the diversity of a trait from the diversity of phylogenetic lineages. Associated fauna might either benefit from plant trait diversity, because it provides them complementary resources, or suffer from it due to dilution of preferred resources. We hence hypothesize that decoupling of trait and phylogenetic diversity weakens the relationship between the plant-trait diversity and the abundance and diversity of associated fauna. Studying permanent meadows, we tested for combined effects of plant phylogenetic diversity and diversity of two functional traits (specific leaf area, leaf dry matter content) on major groups of soil fauna (earthworms, mites, springtails, nematodes). We found that only in phylogenetically uniform plant communities, was uniformity in the functional traits associated with (i) high abundance in springtails, and (ii) high abundance of the sub-group that feeds more directly on plant material (in springtails and mites) or those that are more prone to disturbance (in nematodes), and (iii) high diversity in all three groups tested (springtails, earthworms, nematodes). Our results suggest that soil fauna profits from the resource concentration in local plant communities that are uniform in both functional traits and phylogenetic lineages. Soil fauna would hence benefit from co-occurrence of closely related plants that have conserved the same trait values, rather than of distantly related plants that have converged in traits. This might result in faster decomposition and a positive feedback between trait conservatism and ecosystem functioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229721PMC
http://dx.doi.org/10.1007/s00442-023-05384-zDOI Listing

Publication Analysis

Top Keywords

soil fauna
16
functional traits
12
diversity
9
phylogenetic signal
8
plant trait
8
phylogenetically uniform
8
trait diversity
8
phylogenetic lineages
8
associated fauna
8
fauna benefit
8

Similar Publications

The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on (, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis.

View Article and Find Full Text PDF

Exploring chitin metabolite profiles and sensitivity differences in Collembola species exposed to teflubenzuron.

Ecotoxicol Environ Saf

January 2025

Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands. Electronic address:

Effective environmental risk assessments of chemical plant protection products, such as benzoylurea pesticides, are crucial for safeguarding ecosystems. These pesticides, including teflubenzuron, target chitin synthesis in arthropods but also pose risks to non-target soil fauna like Collembola, which play essential roles in decomposition and nutrient cycling. This study combines traditional toxicity tests with a metabolomic approach to examine the interspecies specific sensitivity of three Collembola species - Sinella curviseta, Ceratophysella denticulata, and Folsomia candida - to teflubenzuron.

View Article and Find Full Text PDF

Reproductive effects of the insecticide acephate on a springtail and an enchytraeid in a subtropical soil.

Environ Toxicol Chem

January 2025

Universidade do Estado de Santa Catarina (UDESC Lages), Departmento de Solos e Recursos Naturais, Lages, SC, Brazil.

The widespread use of acephate, a common insecticide, raises concerns about its potential impacts on nontarget soil organisms. This study investigated the chronic effects of acephate on the reproduction of two key soil fauna species, the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus. We exposed these organisms to acephate in both natural Cambisol soil and tropical artificial soil (TAS) to assess potential impacts under different environmental conditions.

View Article and Find Full Text PDF

Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.

View Article and Find Full Text PDF

Native vegetation degradation impacts soil communities and their functions. However, these impacts are often studied by comparing soil biotic attributes across qualitatively defined, discrete degradation levels within a single plant community at a specific location. Direct quantification of the relationships between vegetation and soil attributes across continuous degradation gradients and at larger scales is rare but holds greater potential to reveal robust patterns in aboveground-belowground linkages that may apply across different plant communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!