Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa adult mice. In neonate Gaa , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jimd.12625 | DOI Listing |
Background: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFBackground: A large body of evidence now indicates that the most pathogenic species of Aß in Alzheimer's disease (AD) consist of soluble toxic oligomers (AßO) as opposed to insoluble fibrils and monomers. Using our computational platform, we identified 4 different AßO-restricted conformational B cell epitopes (300, 301, 303, 305) that were tested as vaccines for their ability to induce an antibody response that selectively targets toxic AßO, without inducing potentially detrimental B or T cell responses against plaque or normal Aß. A novel ex vivo approach was then used to select an optimal vaccine configuration amongst the 15 possible combinations of the 4 epitopes to provide maximal binding to a toxic oligomer-enriched low molecular weight (LMW) fraction of soluble AD brain extracts.
View Article and Find Full Text PDFHistol Histopathol
December 2024
Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
Sex hormones regulate gut function and mucosal immunity; however, their specific effects on the mucosa-associated lymphoid tissue (MALT) in the rectum of mammals remain unclear. Here, we aimed to investigate the influence of sex on MALT in the rectum of mammals by focusing on the rectal mucosa-associated lymphoid tissues (RMALTs) of C57BL/6NCrSIc mice. Histological analysis revealed that RMALTs were predominantly located in the lamina propria and submucosa of the rectal mucosa, with a significant sex-related difference in the distance from the anorectal junction to the first appearance of the RMALT.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France.
Background: Chronic innate neuroinflammation mediated by microglia and astrocytes in response to Aβ and pathological Tau species is a cardinal feature of AD that contributes to disease pathogenesis. Accumulating evidence now also highlight an instrumental role of T cells and peripheral-central immune crosstalk in the pathophysiology of AD. Both preclinical and clinical reports suggest the potential therapeutic interest of peripheral immunomodulatory approaches aimed at amplifying regulatory T cells (Tregs), e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!