A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Paintable Bioactive Extracellular Vesicle Ink for Wound Healing. | LitMetric

Paintable Bioactive Extracellular Vesicle Ink for Wound Healing.

ACS Appl Mater Interfaces

State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Published: May 2023

The treatment of cutaneous wounds involving complex biological processes has become a significant public health concern worldwide. Here, we developed an efficient extracellular vesicle (EV) ink to regulate the inflammatory microenvironment and promote vascular regeneration for wound healing. The technology, termed portable bioactive ink for tissue healing (PAINT), leverages bioactive M2 macrophage-derived EVs (EV) and a sodium alginate precursor, forming a biocompatible EV-Gel within 3 min after mixing, enabling it to be smeared on wounds in situ to meet diverse morphologies. The bioactive EV reprogram macrophage polarization and promote the proliferation and migration of endothelial cells, thereby effectively regulating inflammation and enhancing angiogenesis in wounds. Through integration with a 3D printing pen, the platform enables EV-Gel to be applied to wound sites having arbitrary shapes and sizes with geometric matches for tissue repairment. When evaluated using a mouse wound model, PAINT technology accelerates cutaneous wound healing by promoting the angiogenesis of endothelial cells and the polarization of macrophages to M2 phenotype in vivo, demonstrating the high potential of bioactive EV ink as a portable biomedical platform for healthcare.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c03630DOI Listing

Publication Analysis

Top Keywords

wound healing
12
extracellular vesicle
8
vesicle ink
8
bioactive ink
8
endothelial cells
8
wound
5
paintable bioactive
4
bioactive extracellular
4
ink
4
ink wound
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!