Room-Temperature Solid-State Polymer Electrolyte in Li-LiFePO , Li-S and Li-O Batteries.

Chemistry

University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara 17, 44121, Ferrara, Italy.

Published: August 2023

A solid polymer electrolyte has been developed and employed in lithium-metal batteries of relevant interest. The material includes crystalline poly(ethylene glycol)dimethyl ether (PEGDME), LiTFSI and LiNO salts, and a SiO ceramic filler. The electrolyte shows ionic conductivity more than 10  S cm at room temperature and approaching 10  S cm at 60 °C, a Li -transference number exceeding 0.3, electrochemical stability from 0 to 4.4 V vs. Li /Li, lithium stripping/deposition overvoltage below 0.08 V, and electrode/electrolyte interphase resistance of 400 Ω. Thermogravimetry indicates that the electrolyte stands up to 200 °C without significant weight loss, while FTIR spectroscopy suggests that the LiTFSI conducting salt dissolves in the polymer. The electrolyte is used in solid-state cells with various cathodes, including LiFePO olivine exploiting the Li-insertion, sulfur-carbon composite operating through Li conversion, and an oxygen electrode in which reduction and evolution reactions (i. e., ORR/OER) evolve on a carbon-coated gas diffusion layer (GDL). The cells operate reversibly at room temperature with a capacity of 140 mA h g at 3.4 V for LiFePO , 400 mA h g at 2 V for sulfur electrode, and 500 mA h g at 2.5 V for oxygen. The results suggest that the electrolyte could be applied in room-temperature solid polymer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202301345DOI Listing

Publication Analysis

Top Keywords

polymer electrolyte
12
solid polymer
8
room temperature
8
electrolyte
6
room-temperature solid-state
4
polymer
4
solid-state polymer
4
electrolyte li-lifepo
4
li-lifepo li-s
4
li-s li-o
4

Similar Publications

Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries.

Nat Commun

January 2025

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.

The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.

View Article and Find Full Text PDF

Understanding Ion Transport in Alkyl Dicarbonates: An Experimental and Computational Study.

ACS Phys Chem Au

January 2025

Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

In an effort to improve safety and cycling stability of liquid electrolytes, the use of dicarbonates has been explored. In this study, four dicarbonate structures with varying end groups and spacers are investigated. The effect of these structural differences on the physical and ion transport properties is elucidated, showing that the end group has a significant influence on ion transport.

View Article and Find Full Text PDF

Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.

View Article and Find Full Text PDF

Unstable solid-electrolyte interphase (SEI) film resulting from chemically active surface state and huge volume fluctuation limits the development of Si-based anode materials in lithium-ion batteries. Herein, a photo-initiated polypyrrole (PPy) coating is manufactured on Si nanoparticles to guide the in situ generation of PPy-integrated hybrid SEI film (hSEI). The hSEI film shows excellent structure stability and optimized component composition for lithium storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!