Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16-22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185491 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2023.164180 | DOI Listing |
Front Med (Lausanne)
December 2024
Laboratoires PKDERM, Grasse, France.
Background: The skin barrier plays a crucial role in protecting our body against external agents. Disruption of this barrier's function leads to increased susceptibility to infections and dermatological diseases. Damaged skin can be due to the use of detergents, sunburn or excessive scratching.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States.
This article presents a colorimetric visual biosensor designed for direct application in undiluted biofluids, which holds significant promise for point-of-need applications. Unlike traditional biosensors that struggle with heavily diluted sample matrices, the presented biosensor does not require any instrumentation or trained personnel, making it highly practical. The sensor features an oligonucleotide probe covalently attached to magnetically separable magnetite (FeO) particles.
View Article and Find Full Text PDFLife Sci
December 2024
"Aurel Ardelean" Institute of Life Sciences, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania; Department of Histology, Faculty of Medicine, "Vasile Goldis" Western University of Arad, 310144 Arad, Romania. Electronic address:
Aims: COVID-19, caused by the SARS-CoV-2 virus, can lead to serious lung conditions, notably interstitial pulmonary fibrosis.
Main Methods: Our study tracked the progression of fibrosis markers in serial bronchoalveolar lavage (BAL) measurements collected from 16 COVID-19 patients at 1, 3, and 6 months post-infection. Additionally, BAL samples from 10 healthy control subjects were included.
JCI Insight
December 2024
Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Patients with immune-mediated inflammatory diseases (IMIDs) like rheumatoid arthritis (RA) are at higher risk for severe COVID-19 and long-term complications in bone health. Emerging clinical evidence demonstrated that SARS-CoV-2 infection reduces bone turnover and promotes bone loss, but the mechanism underlying worsened bone health remains elusive. This study sought to identify specific immune mediators that exacerbated preexisting IMIDs after SARS-CoV-2 exposure.
View Article and Find Full Text PDFMol Immunol
December 2024
School of Life Sciences, Shanghai University, Shanghai 200444, China. Electronic address:
SARS-CoV-2 has posed serious global health challenges not only because of the high degree of virus transmissibility but also due to its severe effects on the respiratory system, such as inducing changes in multiple organs through the ACE2 receptor. This virus makes changes to gene expression at the single-cell level and thus to cellular functions and immune responses in a variety of cell types. Previous studies have not been able to resolve these mechanisms fully, and so our study tries to bridge knowledge gaps about the cellular responses under conditions of infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!