Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brazilian sugarcane plays a vital role in the production of both sugar and renewable energy. However, land use change and long-term conventional sugarcane cultivation have degraded entire watersheds, including a substantial loss of soil multifunctionality. In our study, riparian zones have been reforested to mitigate these impacts, protect aquatic ecosystems, and restore ecological corridors within the sugarcane production landscapes. We examined (i) how forest restoration enables rehabilitation of the soil's multifunctionality after long-term sugarcane cultivation and (ii) how long it takes to regain ecosystem functions comparable to those of a primary forest. We investigated a time series of riparian forests at 6, 15, and 30 years after starting restoration by planting trees (named 'active restoration') and determined soil C stocks, δC (indicative of C origin), as well as measures indicative of soil health. A primary forest and a long-term sugarcane field were used as references. Eleven soil physical, chemical, and biological indicators were used for a structured soil health assessment, calculating index scores based on soil functions. Forest-to-cane conversion reduced 30.6 Mg ha of soil C stocks, causing soil compaction and loss of cation exchange capacity, thus degrading soil's physical, chemical, and biological functions. Forest restoration for 6-30 years recovered 16-20 Mg C ha stored in soils. In all restored sites, soil functions such as supporting root growth, aerating the soil, nutrient storage capacity, and providing C energy for microbial activity were gradually recovered. Thirty years of active restoration was sufficient to reach the primary forest state in overall soil health index, multifunctional performance, and C sequestration. We conclude that active forest restoration in sugarcane-dominated landscapes is an effective way to restore soil multifunctionality approaching the level of the native forest in approximately three decades. Moreover, the C sequestration in the restored forest soils will help to mediate global warming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!