Reconstructing historical black carbon (BC) variations based on sedimentary records are significant for understanding long-term BC emissions, tracing sources, and establishing effective strategies for pollution control. By comparing BC profiles between four lake sediment cores, historical BC variations were reconstructed on the southeastern Mongolian Plateau in North China. Except one, the other three records show close fluxes and similar temporal trends of soot, indicating their repetitiveness on revealing historical variations at a regional scale. Unlike soot, char and BC in these records, derived mainly from local sources, reflected the occurrence of natural fires and human activities near the lakes. Before the ∼1940s, these records showed no well-established anthropogenic BC signals except some occasional natural-related increases. This was different from the global BC increased since the Industrial Revolution, indicating a negligible influence of transboundary BC on the region. Anthropogenic BC in the region had increased since the 1940s-1950s ascribed to emissions from Inner Mongolia and nearby provinces. The increases were moderate in the 1950s-1970s, corresponded with the initial development of industry after the founding of the P.R. China. The most pronounced BC increases occurred in 1980s-2016, commensurate with rapid socio-economic development after the Reform and Opening-up in 1978. Different from model estimations on Chinese BC emissions, our records show unexpected BC increases in recent two decades caused by pollutant emission rises in this undeveloped region. This suggests that BC emissions in relatively small cities and rural areas in China were likely underestimated and their role on national BC cycling needs to be reassessed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164189 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, Changchun 130102, China.
Climate change and human activity are increasing the frequency of wildfires in peatlands and threatening permafrost peatland carbon pools. In Northeast China, low-severity prescribed fires are conducted annually on permafrost peatlands to reduce the risk of wildfires. These fires typically do not burn surface peat but lead to the loss of surface vegetation and introduction of pyrogenic carbon.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
This study addresses the critical challenge of carbon corrosion in proton exchange membrane fuel cells (PEMFCs) by developing hybrid supports that combine the high surface area of carbon black (CB) with the superior crystallinity and graphitic structure of carbon nanofibers (CNFs). Two commercially available CB samples were physically activated and composited with two types of CNFs synthesized via chemical vapor deposition using different carbon sources. The structure, morphology, and crystallinity of the resulting CNF-CB hybrid supports were characterized, and the performances of these hybrid supports in mitigating carbon corrosion and enhancing the PEMFC performance was evaluated through full-cell testing in collaboration with a membrane electrode assembly (MEA) manufacturer (VinaTech, Seoul, Republic, of Korea), adhering to industry-standard fabrication and evaluation procedures.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Horticulture, Fujian Agriculture and Forestry University/ Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
The smoky scent is the most distinctive feature for Souchong black tea. To reduce the dependence on pinewood in the smoking process of Souchong black tea, it is crucial to find an effective alternative smoking material. Five black tea samples were prepared via using specially designed fuel rods as the smoking material in this study.
View Article and Find Full Text PDFLangmuir
January 2025
College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, P. R. China.
In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.
View Article and Find Full Text PDFSci Total Environ
January 2025
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany.
This study evaluates the distribution and sources of thermogenic organic matter in the Baltic Sea water column, focusing on polycyclic aromatic hydrocarbons (PAH), dissolved black carbon (DBC), and the imprint of thermogenic organic matter on the dissolved organic matter (DOM) pool. The spatial patterns and complex interactions between land-based and atmospheric sources were assessed from Kiel Bay to Pomeranian Bight within the water column with the combined targeted and untargeted approaches. The findings emphasize the significant influence of terrestrial inputs from the Oder River and autochthonous production composing DOM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!