Ionic displacement of Ca by Pb in calmodulin is affected by arrhythmia-associated mutations.

Biochim Biophys Acta Mol Cell Res

Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy. Electronic address:

Published: August 2023

Lead is a highly toxic metal that severely perturbs physiological processes even at sub-micromolar levels, often by disrupting the Ca signaling pathways. Recently, Pb-associated cardiac toxicity has emerged, with potential involvement of both the ubiquitous Ca sensor protein calmodulin (CaM) and ryanodine receptors. In this work, we explored the hypothesis that Pb contributes to the pathological phenotype of CaM variants associated with congenital arrhythmias. We performed a thorough spectroscopic and computational characterization of CaM conformational switches in the co-presence of Pb and four missense mutations associated with congenital arrhythmias, namely N53I, N97S, E104A and F141L, and analyzed their effects on the recognition of a target peptide of RyR2. When bound to any of the CaM variants, Pb is difficult to displace even under equimolar Ca concentrations, thus locking all CaM variants in a specific conformation, which exhibits characteristics of coiled-coil assemblies. All arrhythmia-associated variants appear to be more susceptible to Pb than wild type (WT) CaM, as the conformational transition towards the coiled-coil conformation occurs at lower Pb, regardless of the presence of Ca, with altered cooperativity. The presence of arrhythmia-associated mutations specifically alters the cation coordination of CaM variants, in some cases involving allosteric communication between the EF-hands in the two domains. Finally, while WT CaM increases the affinity for the RyR2 target in the presence of Pb, no specific pattern could be detected for all other variants, ruling out a synergistic effect of Pb and mutations in the recognition process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2023.119490DOI Listing

Publication Analysis

Top Keywords

cam variants
16
arrhythmia-associated mutations
8
cam
8
associated congenital
8
congenital arrhythmias
8
cam conformational
8
variants
6
ionic displacement
4
displacement calmodulin
4
calmodulin arrhythmia-associated
4

Similar Publications

Inherited retinal diseases (IRDs) constitute a heterogeneous group of clinically and genetically diverse conditions, standing as a primary cause of visual impairment among individuals aged 15-45, with an estimated incidence of 1:2000. Our study aimed to comprehensively evaluate the genetic variants underlying IRDs in the Turkish population. This study included 50 unrelated Turkish IRD patients and their families.

View Article and Find Full Text PDF

Skin Lesion Classification Through Test Time Augmentation and Explainable Artificial Intelligence.

J Imaging

January 2025

Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI), Consiglio Nazionale delle Ricerche (CNR), DHITECH, Campus Università del Salento, Via Monteroni s.n., 73100 Lecce, Italy.

Despite significant advancements in the automatic classification of skin lesions using artificial intelligence (AI) algorithms, skepticism among physicians persists. This reluctance is primarily due to the lack of transparency and explainability inherent in these models, which hinders their widespread acceptance in clinical settings. The primary objective of this study is to develop a highly accurate AI-based algorithm for skin lesion classification that also provides visual explanations to foster trust and confidence in these novel diagnostic tools.

View Article and Find Full Text PDF

Polycomb group (PcG) and Trithorax group (TrxG) complexes represent two major components of the epigenetic machinery. This study aimed to delineate phenotypic similarities and differences across developmental conditions arising from rare variants in PcG and TrxG genes, using data-driven approaches. 462 patients with a PcG or TrxG-associated condition were identified in the DECIPHER dataset.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!