Due to environmental issues, disposing of household garbage is a significant obstacle for life on Earth. Due to this, several sorts of research on biomass conversion into useable fuel technologies are carried out. Among the most popular and effective technologies is the gasification process, which transforms trash into a synthetic gas that can be used in industry. Several mathematical models have been put out to mimic gasification; however, they often fall short of accurately investigating and fixing flaws in the model's waste gasification. The current study used EES software to estimate the equilibrium of Tabriz City's waste gasification using corrective coefficients. The output of this model demonstrates that raising the temperature of the gasifier outlet, waste moisture, and equivalence ratio decreases the calorific value of the synthesis gas generated. Moreover, when using the current model at 800 °C, the synthesis gas has a calorific value of 1.9 MJm3. By comparing these findings to those of previous studies, it was shown that the biomass's chemical composition and moisture content, numerical or experimental methods, gasification temperature, and preheating of the gas input air all had a major influence on process outcomes. The C of the system and the η are equivalent to 28.31 $/GJ and 17.98%, respectively, according to the integration and multi-objective findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138874 | DOI Listing |
Materials (Basel)
November 2024
Department of Physical Aspects of Ecoenergy, The Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland.
Leather waste contains up to 10% nitrogen (N); thus, combustion or gasification only for the energy recovery would not be rational, if safety standards are met. On the other hand, the chromium (Cr) content exceeding 5% in half of the waste stream (/) is too significant to be applied in agriculture. In this work, four acid hydrolysates from leather waste shavings, both wet-white free of Cr and wet-blue with Cr, were used: two with a mixture of acids and supplemented with Cu, Mn, and Zn, and the other two as semi-products from collagen extraction using hydrochloric acid.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004, China.
As urbanization accelerates, the substantial increase in municipal solid waste (MSW) presents significant challenges for effectively managing and converting this waste into renewable energy. This paper explores an innovative system that integrates chemical looping gasification (CLG) and solid oxide fuel cell (SOFC) technologies to achieve efficient power generation. The SOFC system operates at 3 bar and 900 °C, with a power generation capacity of 9.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Lappeenranta-Lahti University of Technology (LUT), Po. Box 20, FIN - 53851, Lappeenranta, Finland.
In the recycling of metal-containing wastes such as end-of-life vehicles (ELV), residues are generated in the mechanical pre-treatment stage. Beside organics which is the main part of the residues, they also contain metals that physical separation has not been able to separate. As the current treatment of residues is disposal through thermal processing, the process is not optimized from the point of view of metal's recovery.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China; Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai, 200237, China.
Coal gasification fine slag (CGFS) is a solid waste produced from gasification process, which consists of residual carbon with porous structure and minerals. The capture of CO by porous materials is an effective method for reducing CO emissions from industrial sources. In this work, the effective separation of residual carbon and ash from CGFS was achieved by froth flotation.
View Article and Find Full Text PDFWaste Manag
December 2024
Hechi University, Hechi 546300, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!