Background: Dyshomeostasis of copper (Cu) accompanied by Cu accumulation in certain brain areas has been associated with neurodegenerative diseases. One proposed toxic mode of action following Cu overload is oxidative stress associated with neuronal damage, whereas Selenium (Se) is assumed to play here a protective role. This study investigates the relationship between adequate Se supplementation and the respective consequences for Cu transfer into the brain applying an in vitro model of the blood-brain barrier (BBB).
Methods: Primary porcine brain capillary endothelial cells (PBCECs) seeded on Transwell® inserts were supplemented with selenite starting at cultivation in both compartments. After apical application of 15 or 50 µM CuSO, transfer of Cu to the basolateral compartment, the brain facing side, was assessed by ICP-MS/MS.
Results: Incubation with Cu did not negatively affect the barrier properties, whereas Se had a positive effect. Additionally, Se status improved after selenite supplementation. Transfer of Cu was not affected by selenite supplementation. Under Se-deficient conditions, Cu permeability coefficients decreased with increasing Cu concentrations.
Conclusion: The results of this study do not indicate that under suboptimal Se supplementation more Cu transfers across the BBB to the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2023.127180 | DOI Listing |
BMJ Neurol Open
January 2025
Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.
Objective: This study investigated the effects of early treatment and pathophysiology on eosinophilic granulomatosis with polyangiitis neuropathy (EGPA-N).
Methods: Twenty-six consecutive patients with EGPA-N were diagnosed and treated within a day of admission and underwent clinical analysis. Peripheral nerve recovery rates were evaluated after early treatment by identifying the damaged peripheral nerve through detailed neurological findings.
Front Pharmacol
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan.
Platelet-derived growth factor alpha (PDGFRA) plays a significant role in various malignant tumors. PDGFRA expression boosts thyroid cancer cell proliferation and metastasis. Radiorefractory thyroid cancer is poorly differentiated, very aggressive, and resistant to radioiodine therapy.
View Article and Find Full Text PDFJ Pharm Anal
October 2024
College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
Alzheimer's disease (AD) is gradually increasing in prevalence and the complexity of its pathogenesis has led to a lengthy process of developing therapeutic drugs with limited success. Faced with this challenge, we proposed using a state-of-the-art drug screening algorithm to identify potential therapeutic compounds for AD from traditional Chinese medicine formulas with strong empirical support. We developed four deep neural network (DNN) models for AD drugs screening at the disease and target levels.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Trans-sodium crocetinate (TSC) is one of the crocetin derivations that is more soluble and stable than crocetin and its cis form. It easily crosses the blood-brain barrier. TSC has neuroprotective effects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China.
Spontaneous intracerebral hemorrhagic stroke (ICH) is a highly aggressive disease, with a high incidence and mortality rate. Iron deposition following ICH leads to oxidative damage and motor dysfunction, significantly impacting the overall quality of life for those affected. Here, a polyphenolic nanomedicine, catechin-based polyphenol nanoparticles surface-modified by thiol-terminated poly(ethylene glycol) (CNPs@PEG), was developed through the oxidative polymerization and self-assembly of catechin, a natural compound in tea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!