Background: 2021 World Health Organization (WHO) Central Nervous System (CNS) tumor classification increasingly emphasizes the important role of molecular markers in glioma diagnoses. Preoperatively non-invasive "integrated diagnosis" will bring great benefits to the treatment and prognosis of these patients with special tumor locations that cannot receive craniotomy or needle biopsy. Magnetic resonance imaging (MRI) radiomics and liquid biopsy (LB) have great potential for non-invasive diagnosis of molecular markers and grading since they are both easy to perform. This study aims to build a novel multi-task deep learning (DL) radiomic model to achieve preoperative non-invasive "integrated diagnosis" of glioma based on the 2021 WHO-CNS classification and explore whether the DL model with LB parameters can improve the performance of glioma diagnosis.

Methods: This is a double-center, ambispective, diagnostical observational study. One public database named the 2019 Brain Tumor Segmentation challenge dataset (BraTS) and two original datasets, including the Second Affiliated Hospital of Nanchang University, and Renmin Hospital of Wuhan University, will be used to develop the multi-task DL radiomic model. As one of the LB techniques, circulating tumor cell (CTC) parameters will be additionally applied in the DL radiomic model for assisting the "integrated diagnosis" of glioma. The segmentation model will be evaluated with the Dice index, and the performance of the DL model for WHO grading and all molecular subtype will be evaluated with the indicators of accuracy, precision, and recall.

Discussion: Simply relying on radiomics features to find the correlation with the molecular subtypes of gliomas can no longer meet the need for "precisely integrated prediction." CTC features are a promising biomarker that may provide new directions in the exploration of "precision integrated prediction" based on the radiomics, and this is the first original study that combination of radiomics and LB technology for glioma diagnosis. We firmly believe that this innovative work will surely lay a good foundation for the "precisely integrated prediction" of glioma and point out further directions for future research.

Clinical Trail Registration: This study was registered on ClinicalTrails.gov on 09/10/2022 with Identifier NCT05536024.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185782PMC
http://dx.doi.org/10.3389/fnmol.2023.1183032DOI Listing

Publication Analysis

Top Keywords

"integrated diagnosis"
12
radiomic model
12
integrated prediction"
12
mri radiomics
8
radiomics liquid
8
liquid biopsy
8
preoperatively non-invasive
8
non-invasive diagnosis
8
glioma based
8
deep learning
8

Similar Publications

To investigate the combined application of cytology, cell block histology and immunohistochemistry to improve the diagnostic accuracy of solid pancreatic lesions in endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) samples. The pathological data of EUS-FNA in 311 cases of solid pancreatic lesions submitted to the Second Hospital of Hebei Medical University, Shijiazhuang, China from May 2019 to September 2023 were retrospectively analyzed. The cases included pancreatic ductal adenocarcinoma (PDAC, 172 cases), solid pseudopapillary neoplasm (SPN, 12 cases), neuroendocrine tumors (PNET, 14 cases) and chronic pancreatitis (113 cases).

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

The manifestation of glioblastoma, IDH-wildtype (GB) as intracranial hemorrhage (ICH) presents diagnostic and therapeutic challenges. Molecular characteristics, including TERT promoter mutation, EGFR amplification, and chromosome 7 gain/10 loss, were incorporated to diagnose GB in the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System. When molecular analyses fail to detect low fractions of these genetic alterations, the integrated diagnosis of GB can be enigmatic.

View Article and Find Full Text PDF

Background: Medulloblastoma (MB) is one of the most prevalent embryonal malignant brain tumors. Current classification organizes these tumors into four molecular subgroups (WNT, SHH, Group 3, and Group 4 MB). Recently, a comprehensive classification has been established, identifying numerous subtypes, some of which exhibit a poor prognosis.

View Article and Find Full Text PDF

Rhabdomyosarcoma in children and young adults.

Virchows Arch

December 2024

Department of Pathology and Laboratory Medicine, Indiana University, 350 W 11st St, Indianapolis, IN, 46202, USA.

Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in childhood, accounting for 3% of all pediatric malignancies and 50% of all pediatric soft tissue sarcomas. In adolescents and young adults (AYA) however, RMS comprises only 6.5% of all soft tissue sarcomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!