Background: Bromodomain-containing protein 9 (BRD9) has been reported to be upregulated in multiple malignancies and facilitate cancer progression. However, there is a paucity of data relating to its expression and biological role in colorectal cancer (CRC). Therefore, this current study examined the prognostic role of BRD9 in CRC and the underlying mechanisms involved.
Methods: Real-time polymerase chain reaction (PCR) and Western blotting were used to examine the expression of BRD9 in paired fresh CRC and para-tumor tissues from colectomy patients (n=31). Immunohistochemistry (IHC) was performed to assess BRD9 expression in 524 paraffin-embedded archived CRC samples. The clinical variables are including age, sex, carcinoembryonic antigen (CEA), location of tumor, T stage, N stage, and TNM classification. The effect of BRD9 on the prognosis of CRC patients was explored by Kaplan-Meier and Cox regression analyses. Cell counting kit 8 (CCK-8), clone formation assay, transwell assay, and flow cytometry were used to determine CRC cell proliferation, migration, invasion, and apoptosis, respectively. Xenograft models in nude mice were established to investigate the role of the BRD9 .
Results: BRD9 mRNA and protein expression levels were significantly upregulated in CRC cells compared to normal colorectal epithelial cells (P<0.001). IHC analysis of 524 paraffin-embedded archived CRC tissues showed that high BRD9 expression was significantly associated with TNM classifications, CEA, and lymphatic invasion (P<0.01). Univariate and multivariate analyses indicated that BRD9 [hazard ratio (HR): 3.04, 95% confidence interval (CI): 1.78-5.20; P<0.01] expression and sex (HR: 6.39, 95% CI: 3.94-10.37; P<0.01) were independent prognostic factors for overall survival in the entire cohort. Overexpressing BRD9 promoted CRC cell proliferation, while silencing BRD9 inhibited the proliferation of CRC cells. Furthermore, we showed that BRD9 silencing significantly inhibited epithelial-mesenchymal transition (EMT) via the estrogen pathway. Finally, we demonstrated that silencing BRD9 significantly inhibited the proliferation and tumorigenicity of SW480 and HCT116 cells and in nude mice (P<0.05).
Conclusions: This study demonstrated that BRD9 high could be an independent prognostic risk factor for CRC. Furthermore, the BRD9/estrogen pathway may contribute to the proliferation of CRC cells and EMT, suggesting that BRD9 may be a novel molecular target in the therapeutic treatment of CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186543 | PMC |
http://dx.doi.org/10.21037/jgo-23-271 | DOI Listing |
Genes (Basel)
January 2025
Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.
TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.
View Article and Find Full Text PDFBMC Cancer
January 2025
Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
Background: This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor , we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. Electronic address:
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Breast Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fuiian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
Background: Bromodomain-containing protein (BRD) play a pivotal role in the development and progression of malignant tumours. This study aims to identify prognostic genes linked to BRD-related genes (BRDRGs) in patients with triple-negative breast cancer (TNBC) and to construct a novel prognostic model.
Methods: Data from TCGA-TNBC, GSE135565, and GSE161529 were retrieved from public databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!