The hostile tumor microenvironment limits the efficacy of adoptive cell therapies. Activation of the Fas death receptor initiates apoptosis and disrupting these receptors could be key to increasing CAR T cell efficacy. We screened a library of Fas-TNFR proteins identifying several novel chimeras that not only prevented Fas ligand-mediated kill, but also enhanced CAR T cell efficacy by signaling synergistically with the CAR. Upon binding Fas ligand, Fas-CD40 activated the NF-κB pathway, inducing greatest proliferation and IFN-γ release out of all Fas-TNFRs tested. Fas-CD40 induced profound transcriptional modifications, particularly genes relating to the cell cycle, metabolism, and chemokine signaling. Co-expression of Fas-CD40 with either 4-1BB- or CD28-containing CARs increased efficacy by augmenting CAR T cell proliferation and cancer target cytotoxicity, and enhanced tumor killing and overall mouse survival . Functional activity of the Fas-TNFRs were dependent on the co-stimulatory domain within the CAR, highlighting crosstalk between signaling pathways. Furthermore, we show that a major source for Fas-TNFR activation derives from CAR T cells themselves via activation-induced Fas ligand upregulation, highlighting a universal role of Fas-TNFRs in augmenting CAR T cell responses. We have identified Fas-CD40 as the optimal chimera for overcoming Fas ligand-mediated kill and enhancing CAR T cell efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185706 | PMC |
http://dx.doi.org/10.1016/j.omtn.2023.04.017 | DOI Listing |
Wiley Interdiscip Rev Nanomed Nanobiotechnol
November 2024
Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
Messenger ribonucleic acid (mRNA) therapeutics are attracting attention as promising tools in cancer immunotherapy due to their ability to leverage the in vivo expression of all known protein sequences. Even small amounts of mRNA can have a powerful effect on cancer vaccines by promoting the synthesis of tumor-specific antigens (TSA) or tumor-associated antigens (TAA) by antigen-presenting cells (APC). These antigens are then presented to T cells, eliciting strong antitumor immune stimulation.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
November 2024
Cell Therapy Clinical Pharmacology and Modeling, Precision and Translational Medicine, Oncology Cell Therapy and Therapeutic Area Unit, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA.
Despite the initial success of single-targeted chimeric-antigen receptor (CAR) T-cell therapy in hematological malignancies, its long-term effectiveness is often hindered by antigen heterogeneity and escape. As a result, there is a growing interest in cell therapies targeting multiple antigens (≥2). However, the dose-exposure-response relationship and specific factors influencing the pharmacology of dual-targeted CAR-T-cell therapy remain unclear.
View Article and Find Full Text PDFExpert Opin Biol Ther
December 2024
Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination.
View Article and Find Full Text PDFCommun Biol
October 2024
RocRock Biotechnology Co. Ltd, Suzhou, China.
Mol Ther Oncol
December 2024
Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!