The GO- and SBA-15-modified UiO-66 adsorbents were developed for removal of trace Cr(vi) from wastewater and investigated to understand the effect of different hybrid ways on the absorption activity and reaction mechanism. The characterization results confirmed that the UiO-66 nanoparticles could be encapsulated by the SBA-15 matrix and anchored onto GO layers. Due to different exposure modes, the adsorption results showed that the GO-modified UiO-66 had better Cr(vi) trapping performance with the maximum removal efficiency of 97% within 3 min, presenting one of the most efficient Cr(vi) removal materials. Kinetic models showed that the adsorption process included fast, exothermic, spontaneous and pseudo-secondary chemical adsorption. By comparison with the Freundlich and Temkin model, the results revealed that the adsorption process of Cr(vi) by UiO-66@SBA-15 involved some multi-layer physical adsorption, while Cr(vi) was adsorbed onto the UiO-66@GO surface. The mechanism study also found that the fixation of Cr was the chemical action of UiO-66 on GO. Additionally, the encapsulated way increases the protection of UiO-55 from surface damage. In all, both hard-core-shell UiO-66@SBA-15 and piece UiO-66@Go increase the absorption activity of Cr(vi), but the different hybrid ways lead to different activities, absorption processes and regeneration abilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187030 | PMC |
http://dx.doi.org/10.1039/d3ra01308a | DOI Listing |
Int J Biol Macromol
January 2025
Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:
Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.
View Article and Find Full Text PDFBMC Chem
January 2025
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
Surfactant-modified biochar is a viable adsorbent for eliminating Cr(VI) from synthetic wastewater. The biochar obtained from the zea mays plant (BC) was tailored with sodium dodecyl sulfate (SDS) as an anionic surfactant forming SDS-BC adsorbent. Different controlling conditions have been evaluated including pH of the solution, biomass concentration, primary Cr(VI) concentration, time of adsorption, and temperature.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea. Electronic address:
The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam. Electronic address:
Whole-cell bioreactors equipped with external physico-chemical sensors have gained attention for real-time toxicity monitoring. However, deploying these systems in practice is challenging due to potential interference from unknown wastewater constituents with liquid-contacted sensors. In this study, a novel approach using a bioreactor integrated with a non-dispersive infrared CO₂ sensor for both toxicity detection and real-time monitoring of microbial growth phases was successfully demonstrated.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!