A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MobCovid: Confirmed Cases Dynamics Driven Time Series Prediction of Crowd in Urban Hotspot. | LitMetric

Monitoring the crowd in urban hot spot has been an important research topic in the field of urban management and has high social impact. It can allow more flexible allocation of public resources such as public transportation schedule adjustment and arrangement of police force. After 2020, because of the epidemic of COVID-19 virus, the public mobility pattern is deeply affected by the situation of epidemic as the physical close contact is the dominant way of infection. In this study, we propose a confirmed case-driven time-series prediction of crowd in urban hot spot named MobCovid. The model is a deviation of Informer, a popular time-serial prediction model proposed in 2021. The model takes both the number of nighttime staying people in downtown and confirmed cases of COVID-19 as input and predicts both the targets. In the current period of COVID, many areas and countries have relaxed the lockdown measures on public mobility. The outdoor travel of public is based on individual decision. Report of large amount of confirmed cases would restrict the public visitation of crowded downtown. But, still, government would publish some policies to try to intervene in the public mobility and control the spread of virus. For example, in Japan, there are no compulsory measures to force people to stay at home, but measures to persuade people to stay away from downtown area. Therefore, we also merge the encoding of policies on measures of mobility restriction made by government in the model to improve the precision. We use historical data of nighttime staying people in crowded downtown and confirmed cases of Tokyo and Osaka area as study case. Multiple times of comparison with other baselines including the original Informer model prove the effectiveness of our proposed method. We believe our work can make contribution to the current knowledge on forecasting the number of crowd in urban downtown during the Covid epidemic.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3268291DOI Listing

Publication Analysis

Top Keywords

confirmed cases
16
crowd urban
16
public mobility
12
prediction crowd
8
urban hot
8
hot spot
8
nighttime staying
8
staying people
8
downtown confirmed
8
crowded downtown
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!