Cerium oxide nanoparticles have so far been investigated for their role as an antioxidant in pathologies involving inflammation and high oxidative stress. However, its role as a plant and bacterial growth modulator and heavy metal stress reliever has been overlooked to date. Heavy metal contamination poses a major threat to mankind and the life-sustaining ecosystem. This study emphasizes the role of cerium oxide produced by the combustion method in promoting growth in Vigna radiata and Bacillus coagulans in the presence of mercury. The results show that cerium oxide nanoparticles significantly reduce the production of reactive oxygen species, hydrogen peroxide, and product of lipid peroxidation malondialdehyde in plants grown in the presence of 50 ppm mercury, thereby reducing oxidative stress. Nanoceria also increases plant growth with respect to those growing solely in mercury. Nanoceria alone does not significantly affect the growth of Vigna radiata as well as Bacillus coagulans and Escherichia coli, thereby proving its non-hazardous nature. It also significantly increases the growth of Bacillus coagulans at 25 ppm and 50 ppm of mercury. This study throws light upon the biologically non-hazardous nature of this particle by revealing how it promotes the growth of two soil bacteria Bacillus coagulans and E.coli at various dosages. The results of this study pave the way for the use of cerium oxide nanoparticles in plants and various other organisms to combat abiotic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27496-y | DOI Listing |
Sci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO 65211, USA. Electronic address:
Endometriosis, the growth of endometrial-like tissue outside the uterus, causes chronic pain and infertility in 10 % of reproductive-aged women worldwide. Unfortunately, no permanent cure exists, and current medical and surgical treatments offer only temporary relief. Endometriosis is a chronic inflammatory disease characterized by immune system dysfunction.
View Article and Find Full Text PDFSci Adv
January 2025
Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan.
Thermal switches, which electrically turn heat flow on and off, have attracted attention as thermal management devices. Electrochemical reduction/oxidation switches the thermal conductivity (κ) of active metal oxide films. The performance of the previously proposed electrochemical thermal switches is low; the on/off κ-ratio is mostly less than 5, and the κ-switching width is less than 5 watts per meter kelvin.
View Article and Find Full Text PDFMater Today Bio
February 2025
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia.
ACS Nano
December 2024
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!