Tail-anchored (TA) proteins play essential roles in mammalian cells, and their accurate localization is critical for proteostasis. Biophysical similarities lead to mistargeting of mitochondrial TA proteins to the ER, where they are delivered to the insertase, the ER membrane protein complex (EMC). Leveraging an improved structural model of the human EMC, we used mutagenesis and site-specific crosslinking to map the path of a TA protein from its cytosolic capture by methionine-rich loops to its membrane insertion through a hydrophilic vestibule. Positively charged residues at the entrance to the vestibule function as a selectivity filter that uses charge-repulsion to reject mitochondrial TA proteins. Similarly, this selectivity filter retains the positively charged soluble domains of multipass substrates in the cytosol, thereby ensuring they adopt the correct topology and enforcing the "positive-inside" rule. Substrate discrimination by the EMC provides a biochemical explanation for one role of charge in TA protein sorting and protects compartment integrity by limiting protein misinsertion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200711PMC
http://dx.doi.org/10.1083/jcb.202212007DOI Listing

Publication Analysis

Top Keywords

selectivity filter
12
membrane protein
8
protein complex
8
protein misinsertion
8
mitochondrial proteins
8
positively charged
8
protein
6
filter membrane
4
complex limits
4
limits protein
4

Similar Publications

Introduction: Osteoarthritis (OA) is the most prevalent form of arthritis and affects over 528 million people worldwide. Degenerative joint disease involves cartilage degradation, subchondral bone remodeling, and synovial inflammation, leading to chronic pain, stiffness, and impaired joint function. Initially regarded as a "wear and tear" condition associated with aging and mechanical stress, OA is now recognized as a multifaceted disease influenced by systemic factors such as metabolic syndrome, obesity, and chronic low-grade inflammation.

View Article and Find Full Text PDF

For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.

View Article and Find Full Text PDF

This paper presents a comparative study of different AI models for indoor positioning systems, emphasizing improvements in localization accuracy and processing time. This study examines Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs), and the Kalman filter using a real Received Signal Strength Indicator (RSSI) and 9-axis ICM-20948 sensor. An in-depth analysis is provided in this paper for data cleaning and feature selection to reduce errors for all the models.

View Article and Find Full Text PDF

Sensor selection is a vital part of Wireless Sensor Network (WSN) management. This becomes of increased importance when considering the use of low-cost, bearing-only sensor nodes for the tracking of Unmanned Aerial Vehicles (UAVs). However, traditional techniques commonly form excessively large sensor clusters, which result in the collection of redundant information, which can deteriorate performance while also increasing the associated network costs.

View Article and Find Full Text PDF

Efficacy of Telerehabilitation Protocols for Improving Functionality in Post-COVID-19 Patients.

Life (Basel)

January 2025

Physiotherapy Program, Faculty of Health, Universidad Santiago de Cali, Cali 760035, Colombia.

Background And Aims: Telerehabilitation is essential for the recovery of post-COVID-19 patients, improving exercise tolerance, dyspnea, functional capacity, and daily activity performance. This study aimed to describe telerehabilitation protocols specifically designed for individuals with post-COVID-19 sequelae.

Materials And Methods: A systematic review was conducted with registration number CRD42023423678, based on searches developed in the following databases: ScienceDirect, Scopus, Dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!