A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing a Biomechanical Testing Setup of the Pelvis-Part I: Computational Design of Experiments. | LitMetric

Developing a Biomechanical Testing Setup of the Pelvis-Part I: Computational Design of Experiments.

J Biomech Eng

Department of Engineering, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 6, Rue Richard Coudenhove-Kalergi, Luxembourg L-1359, Luxembourg.

Published: October 2023

Biomechanics of the human pelvis and the associated implants are still a medical and engineering debated topic. Today, no biomechanical testing setup is dedicated to pelvis testing and associated reconstructive implants with accepted clinical relevance. This paper uses the computational experiment design procedure to numerically design a biomechanical test stand that emulates the pelvis physiological gait loading. The numerically designed test stand reduces the 57 muscles and joints' contact forces iteratively to only four force actuators. Two hip joints' contact forces and two equivalent muscle forces with a maximum magnitude of 2.3 kN are applied in a bilateral reciprocating action. The stress distribution of the numerical model of the developed test stand is very similar to that of the numerical model of the pelvis with all 57 muscles and joint forces. For instance, at the right arcuate line, the state of stress is identical. However, at the location of superior rami, there is a deviation ranging from 2% to 20% between the two models. The boundary conditions and the nature of loading adopted in this study are more realistic regarding the clinical relevance than state-of-the-art. The numerically developed biomechanical testing setup of the pelvis in this numerical study (Part I) was found to be valid for the experimental testing of the pelvis. The construct of the testing setup and the experimental testing of an intact pelvis under gait loading are discussed in detail in Part II: Experimental Testing.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4062538DOI Listing

Publication Analysis

Top Keywords

testing setup
16
biomechanical testing
12
test stand
12
experimental testing
12
testing
8
clinical relevance
8
gait loading
8
joints' contact
8
contact forces
8
numerical model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!