The determination of functionality or quality of high-density lipoproteins (HDL) is assuming a central stage in the prediction of cardiovascular diseases (CVD). To assess HDL quality, several attempts have been made to develop an automated, cost-effective cholesterol efflux capacity (CEC) system with few operational steps that might be used in clinical settings for large throughput testing. The work of Dr. Ohkawa and co-workers seems to address this issue and provide a solution for the same (Bioscience Reports (2023), 43 BSR20221519, https://doi.org/10.1042/BSR20221519). Earlier work from the author's lab utilized a radioisotope and cell-free CEC assay known as the immobilized liposome-bound gel beads (ILGs) method. However, this assay required a centrifugation step to separate the cells and was not suitable for automation. To overcome these limitations, two very important changes were made: (i) magnetic beads were used instead of gel beads that allowed them to avoid the centrifugation process that would allow ease of setting up an autonomous analyzer; (ii) porous magnetic beads were coated with liposomes containing fluorescently tagged cholesterol instead radiolabeled cholesterol. These two changes can be considered not only significant but also novel as they were highly suitable for CEC testing. The authors reported the successful development of a simple immobilized liposome-based magnetic beads (ILMs) automated system to measure CEC, which provided both consistent performance and satisfactory correlation with the other methods. Thus, we feel the present study will open newer avenues for measuring the quality of HDL in addition to the quantity of HDL-cholesterol in clinical settings in a more robust way.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244966 | PMC |
http://dx.doi.org/10.1042/BSR20230124 | DOI Listing |
Ear Nose Throat J
January 2025
Department of Otolaryngology, People's Hospital of Jingshan, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingmen City, Hubei Province, People's Republic of China.
This case involved a 21-year-old male patient who was admitted due to having a lump behind the left ear that had been present for 2 years and had gradually increased in size for over a year. This was accompanied by palpable hard masses on the same side of the neck. Laboratory tests indicated an elevated eosinophil count, and magnetic resonance imaging confirmed the "string-of-beads" sign in the left cervical lymph nodes.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:
E-selectin (CD62E) is an adhesion molecule expressed on the surface of endothelial cells (ECs) and its level increases significantly upon the stimulation of ECs by inflammatory factors. Quantitative analysis of CD62E is of great importance to early diagnosis and treatment of vascular diseases and hypertension. A new method for the determination of CD62E was developed using a portable pH meter in this work.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
A novel approach to protein quantification utilizing a microfluidic platform activated by a magnetic assembly of functionalized magnetic beads around soft magnetic capture centers is presented. Functionalized magnetic beads, known for their high surface area and facile manipulation under external magnetic fields, are injected inside microfluidic channels and immobilized magnetically on the surface of glass-coated soft magnetic microwires placed along the symmetry axis of these channels. A fluorescent (Cy5) immunomagnetic sandwich ELISA is then performed by sequentially flowing the sample and all necessary reagents in the microfluidic channels.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples.
View Article and Find Full Text PDFAnal Chem
January 2025
The School of Information Sciences and Technology, Northwest University, Xi'an 710127, P.R.China.
Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!