Background: Amongst healthy older people, a number of correlates of impaired skeletal muscle mass and function have been defined. Although the prevalence of obesity is increasing markedly in this age group, information is sparse about the particular impacts of obesity on ageing skeletal muscle or the molecular mechanisms that underlie this and associated disease risk.

Methods: Here, we examined genome-wide transcriptional changes using RNA sequencing in muscle biopsies from 40 older community-dwelling men from the Hertfordshire Sarcopenia Study with regard to obesity (body mass index [BMI] >30 kg/m , n = 7), overweight (BMI 25-30, n = 19), normal weight (BMI < 25, n = 14), and per cent and total fat mass. In addition, we used EPIC DNA methylation array data to investigate correlations between DNA methylation and gene expression in aged skeletal muscle tissue and investigated the relationship between genes within altered regulatory pathways and muscle histological parameters.

Results: Individuals with obesity demonstrated a prominent modified transcriptional signature in muscle tissue, with a total of 542 differentially expressed genes associated with obesity (false discovery rate ≤0.05), of which 425 genes were upregulated when compared with normal weight. Upregulated genes were enriched in immune response (P = 3.18 × 10 ) and inflammation (leucocyte activation, P = 1.47 × 10 ; tumour necrosis factor, P = 2.75 × 10 ) signalling pathways and downregulated genes enriched in longevity (P = 1.5 × 10 ) and AMP-activated protein kinase (AMPK) (P = 4.5 × 10 ) signalling pathways. Furthermore, differentially expressed genes in both longevity and AMPK signalling pathways were associated with a change in DNA methylation, with a total of 256 and 360 significant cytosine-phosphate-guanine-gene correlations identified, respectively. Similar changes in the muscle transcriptome were observed with respect to per cent fat mass and total fat mass. Obesity was further associated with a significant increase in type II fast-fibre area (P = 0.026), of which key regulatory genes within both longevity and AMPK pathways were significantly associated.

Conclusions: We provide for the first time a global transcriptomic profile of skeletal muscle in older people with and without obesity, demonstrating modulation of key genes and pathways implicated in the regulation of muscle function, changes in DNA methylation associated with such pathways and associations between genes within the modified pathways implicated in muscle regulation and changes in muscle fibre type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401538PMC
http://dx.doi.org/10.1002/jcsm.13255DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
transcriptional changes
8
adiposity associated
4
associated widespread
4
widespread transcriptional
4
changes downregulation
4
downregulation longevity
4
longevity pathways
4
pathways aged
4
aged skeletal
4

Similar Publications

Electroacupuncture treatment for sarcopenia: study protocol for a randomized controlled trial.

BMC Complement Med Ther

December 2024

Division of internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Introduction: Sarcopenia is a disease primarily characterized by age-related loss of skeletal muscle mass, muscle strength, and/or decline in physical performance. Sarcopenia has an insidious onset which can cause functional impairment in the body and increase the risk of falls and disability in the elderly. It significantly increases the likelihood of fractures and mortality, severely impairing the quality of life and health of the elderly people.

View Article and Find Full Text PDF

This study aimed to investigate the underlying mechanisms by which physical exercise mitigates muscle atrophy induced by Dexamethasone (Dex). A muscle atrophy model was established in the mouse C2C12 cell line and 8-week-old mice treated with Dex, with subsequent verification of phenotype and atrogene expression. The potential benefits of combined aerobic and resistance exercise in mitigating muscle atrophy were then examined.

View Article and Find Full Text PDF

Introduction: Women have generally lower body size and lean- to fat-mass ratio, lower maximal anaerobic power due to a lower muscle mass, and fewer fast-twitch fibers, although they can show higher resistance to fatigue or greater metabolic flexibility than men. These factors are well known and explain the sex differences in endurance sports such as distance running (10%-12%). Several of these factors-particularly the differences in body composition and skeletal-muscle characteristics-may directly impact vertical displacement and uphill performance.

View Article and Find Full Text PDF

Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models.

View Article and Find Full Text PDF

The long-lasting impact of high-intensity training via collaborative care in patients with schizophrenia: A 5-year follow-up study.

Schizophr Res

December 2024

Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway; Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. Electronic address:

Unlabelled: Although exercise is medicine for outpatients with schizophrenia, it is unclear if one-year adherence-supported exercise leads to a "tipping point", at which the exercise becomes a routine manifested as life-long training in the patient group.

Methods: Forty-eight outpatients (28 men/20 women: 35 ± 11 (mean ± SD) years) with schizophrenia (ICD-10: F20-29) were randomised to: 1) collaborative care group (TG), performing aerobic interval (AIT; 4 × 4-min treadmill walking/running at ∼90 % peak heart rate) and leg press maximal strength training (MST; 4 × 4 repetitions at ∼90 % maximal strength [1RM]) 2d·wk. for 1-year, supported by transportation and training supervision; or 2) control group (CG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!