SpikoGen® vaccine is a subunit COVID-19 vaccine expressed in insect cells comprising recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A Phase 2 trial was conducted in 400 adult participants randomised 3:1 to receive two intramuscular doses of SpikoGen® vaccine or saline placebo 3 weeks apart. Some Phase 2 trial participants later enrolled in a separate booster study and received a third dose of SpikoGen® vaccine. This stored serum was used to assess the ability of SpikoGen® vaccine to induce cross-neutralising antibodies against SARS-CoV-2 variants of concern. Sera taken at baseline and 2 weeks after the second vaccine dose from baseline seronegative Phase 2 subjects was evaluated using a panel of spike pseudotype lentivirus neutralisation assays for the ability to cross-neutralise a wide range of SARS-CoV-2 variants, including Omicron BA.1, BA.2 and BA.4/5. Stored samples of subjects who participated in both the 2-dose Phase 2 trial and a third dose booster trial 6 months later were also analysed for changes in cross-neutralising antibodies over time and dose. Two weeks after the second dose, sera broadly cross-neutralised most variants of concern, albeit with titres against Omicron variants being ~10-fold lower. While Omicron titres fell to low levels 6 months after the second vaccine dose in most subjects, they showed a ~20-fold rise after the third dose booster, after which there was only a ~2-3-fold difference in neutralisation of Omicron and the ancestral strains. Despite being based on the ancestral Wuhan sequence, after two doses, SpikoGen® vaccine induced broadly cross-neutralising serum antibodies. Titres then reduced over time but were rapidly restored by a third dose booster. This resulted in high neutralisation including against the Omicron variants. This data supports ongoing use of SpikoGen® vaccine for protection against recent SARS-CoV-2 Omicron variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524547 | PMC |
http://dx.doi.org/10.1111/imm.13661 | DOI Listing |
Clin Rheumatol
January 2025
Department of Pediatric Rheumatology, Zeynep Kamil Women and Children's Diseases Training and Research Hospital, Istanbul, Turkey.
Curr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFJ Infect Dis
January 2025
College of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY.
Introduction: We sought to explore the variability of antibody responses to multiple vaccines during early life in individual children, assess the trajectory of each child longitudinally, determine the associations of demographic variables and antibiotic exposures with vaccine-induced immunity, and link vaccine responsiveness to infection proneness.
Methods: In 357 prospectively-recruited children, age six through 36 months, antibody levels to 13 routine vaccine antigens were measured in sera at multiple time points and normalized to their respective protective thresholds to categorize children into four groups: very low, low, normal, and high vaccine responder. Demographic variables and frequency of antibiotic exposure data were collected.
Microb Biotechnol
January 2025
Department of Animal Biotechnology, Dankook University, Cheonan, Korea.
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.
View Article and Find Full Text PDFMil Med
January 2025
Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
Introduction: Vaccine mandates have been used to minimize the duty days lost and deaths attributable to infectious disease among active duty Service members (ADSMs). In response to the global COVID-19 pandemic, in August 2021, the U.S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!