A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detecting Double Expression Status in Primary Central Nervous System Lymphoma Using Multiparametric MRI Based Machine Learning. | LitMetric

Background: Double expression lymphoma (DEL) is a subtype of primary central nervous system lymphoma (PCNSL) that often has a poor prognosis. Currently, there are limited noninvasive ways to detect protein expression.

Purpose: To detect DEL in PCNSL using multiparametric MRI-based machine learning.

Study Type: Retrospective.

Population: Forty PCNSL patients were enrolled in the study among whom 17 were DEL (9 males and 8 females, 61.29 ± 14.14 years) and 23 were non-DEL (14 males and 9 females, 55.57 ± 14.16 years) with 59 lesions (28 DEL and 31 non-DEL).

Field Strength/sequence: ADC map derived from DWI (b = 0/1000 s/mm ), fast spin echo T2WI, T2FLAIR, and contrast-enhanced T1 weighted imaging (T1CE) were collected at 3.0 T.

Assessment: Two raters manually segmented lesions by ITK-SNAP on ADC, T2WI, T2FLAIR and T1CE. A total of 2234 radiomics features from the tumor segmentation area were extracted. The t-test was conducted to filter the features, and elastic net regression algorithm combined with recursive feature elimination was used to calculate the essential features. Finally, 12 groups with combinations of different sequences were fitted to 6 classifiers, and the optimal models were selected.

Statistical Tests: Continuous variables were assessed by the t-test, while categorical variables were assessed by the non-parametric test. Interclass correlation coefficient tested variables' consistency. Sensitivity, specificity, accuracy F1-score, and area under the curve (AUC) were used to evaluate model performance.

Results: DEL status could be identified to varying degrees with 72 models based on radiomics, and model performance could be improved by combining different sequences and classifiers. Both SVMlinear and logistic regression (LR) combined with four sequence group had similar largest AUCmean (0.92 ± 0.09 vs. 0.92 ± 0.05), and SVMlinear was considered as the optimal model in this study since the F1-score of SVMlinear (0.88) was higher than that of LR (0.83).

Data Conclusion: Multiparametric MRI-based machine learning is promising in DEL detection.

Evidence Level: 4 TECHNICAL EFFICACY STAGE: 2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.28782DOI Listing

Publication Analysis

Top Keywords

double expression
8
primary central
8
central nervous
8
nervous system
8
system lymphoma
8
machine learning
8
multiparametric mri-based
8
mri-based machine
8
males females
8
t2wi t2flair
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!