Organic pollutants produced during industrial production are putting more stress on natural water resources. It is a considerable challenge to realize water remediation from organic pollutants in a cost-effective way. Here, we report a feasible method to fabricate FeN-decorated porous carbon frameworks (F/M-Fe) by one-step pyrolysis of wheat flour, melamine and metal ions. The prepared F/M-Fe possessing intrinsic peroxidase (POD)- and catalase (CAT)-like activities could effectively remove organic pollutants, which could be deduced from the degradation of methylene blue trihydrate (MB), rhodamine B (RhB), and tetracycline (TC) as pollutant simulants, as well as excess HO without consuming additional resources and energy. The degradation process was facilitated by the primary active intermediates of ˙OH and O in the catalytic pathway, with efficiencies of 95.8% for MB, 91.6% for RhB, and 92.3% for TC achieved within 10, 50, and 70 min, respectively. Thanks to the encouraging recycling behavior and well-conditioned tolerance, F/M-Fe shows satisfactory catalytic performance on a proof-of-concept filter-type device for MB degradation. In addition, F/M-Fe could reduce organic pollutants to a safe level, under which zebrafish can survive well, which exhibited the potential value of F/M-Fe in water remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr00048f | DOI Listing |
Environ Pollut
December 2024
Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:
Here we covalently constructed abundant long-chain hydroxyl groups-functionalized magnetic microporous organic networks (MMON-2OH) for detection of eight Triazine herbicides (THs) in honey and water samples. MMON-2OH owned a high surface area (287.86 m²/g), enhanced water compatibility, and increased exposure of long-chain hydroxyl groups, which significantly improved enrichment capacity for THs.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!