FeN-decorated porous carbon frameworks from wheat flour with dual enzyme-mimicking activities for organic pollutant degradation.

Nanoscale

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.

Published: June 2023

Organic pollutants produced during industrial production are putting more stress on natural water resources. It is a considerable challenge to realize water remediation from organic pollutants in a cost-effective way. Here, we report a feasible method to fabricate FeN-decorated porous carbon frameworks (F/M-Fe) by one-step pyrolysis of wheat flour, melamine and metal ions. The prepared F/M-Fe possessing intrinsic peroxidase (POD)- and catalase (CAT)-like activities could effectively remove organic pollutants, which could be deduced from the degradation of methylene blue trihydrate (MB), rhodamine B (RhB), and tetracycline (TC) as pollutant simulants, as well as excess HO without consuming additional resources and energy. The degradation process was facilitated by the primary active intermediates of ˙OH and O in the catalytic pathway, with efficiencies of 95.8% for MB, 91.6% for RhB, and 92.3% for TC achieved within 10, 50, and 70 min, respectively. Thanks to the encouraging recycling behavior and well-conditioned tolerance, F/M-Fe shows satisfactory catalytic performance on a proof-of-concept filter-type device for MB degradation. In addition, F/M-Fe could reduce organic pollutants to a safe level, under which zebrafish can survive well, which exhibited the potential value of F/M-Fe in water remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr00048fDOI Listing

Publication Analysis

Top Keywords

organic pollutants
16
fen-decorated porous
8
porous carbon
8
carbon frameworks
8
wheat flour
8
water remediation
8
organic
5
f/m-fe
5
frameworks wheat
4
flour dual
4

Similar Publications

Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs.

Environ Pollut

December 2024

Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.

View Article and Find Full Text PDF

Hydroxylated magnetic microporous organic network for efficient magnetic solid phase extraction of trace triazine herbicides.

J Chromatogr A

December 2024

College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:

Here we covalently constructed abundant long-chain hydroxyl groups-functionalized magnetic microporous organic networks (MMON-2OH) for detection of eight Triazine herbicides (THs) in honey and water samples. MMON-2OH owned a high surface area (287.86 m²/g), enhanced water compatibility, and increased exposure of long-chain hydroxyl groups, which significantly improved enrichment capacity for THs.

View Article and Find Full Text PDF

Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study.

J Hazard Mater

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.

View Article and Find Full Text PDF

Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.

View Article and Find Full Text PDF

Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!