In battery modeling, the electrode is discretized at the macroscopic scale with a single representative particle in each volume. This lacks the accurate physics to describe interparticle interactions in electrodes. To remedy this, we formulate a model that describes the evolution of degradation of a population of battery active material particles using ideas in population genetics of fitness evolution, where the state of a system depends on the health of each particle that contributes to the system. With the fitness formulation, the model incorporates effects of particle size and heterogeneous degradation effects which accumulate in the particles as the battery is cycled, accounting for different active material degradation mechanisms. At the particle scale, degradation progresses nonuniformly across the population of active particles, observed from the autocatalytic relationship between fitness and degradation. Electrode-level degradation is formed from various contributions of the particle-level degradation, especially from smaller particles. It is shown that specific mechanisms of particle-level degradation can be associated with characteristic signatures in the capacity-loss and voltage profiles. Conversely, certain features in the electrode-level phenomena can also provide insight into the relative importance of different particle-level degradation mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.107.044603 | DOI Listing |
Med Sci Monit
January 2025
Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
BACKGROUND Periodontal disease and rheumatoid arthritis (RA) are closely related, and periodontal therapy can potentially improve RA activity. However, it is not clear in which RA patient populations are more effective periodontal therapy for RA treatment. This study aimed to evaluate the effects of treatment for periodontal disease in 30 patients with rheumatoid arthritis and the titers of antibodies to Porphyromonas gingivalis (P.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.
View Article and Find Full Text PDFEye (Lond)
January 2025
Division of Clinical Neuroscience, Department of Ophthalmology, University of Nottingham, Nottingham, UK.
Background/objectives: Anterior segment optical Coherence Tomography (AS-OCT) is used extensively in imaging the cornea in health and disease. Our objective was to analyse and monitor corneal vascularisation (CVas) through the corresponding back-shadows visible on AS-OCT.
Subjects/methods: AS-OCT scans were obtained from 26 consecutive patients (eyes) with CVas of different aetiologies.
Sci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!