Cross-stream migration of a vesicle in vortical flows.

Phys Rev E

Department of Mathematical Sciences, New Jersey Institute of Technology Newark, New Jersey 07102, USA.

Published: April 2023

We use numerical simulations to systematically investigate the vesicle dynamics in two-dimensional (2D) Taylor-Green vortex flow in the absence of inertial forces. Vesicles are highly deformable membranes encapsulating an incompressible fluid and they serve as numerical and experimental proxies for biological cells such as red blood cells. Vesicle dynamics has been studied in free-space or bounded shear, Poiseuille, and Taylor-Couette flows in 2D and 3D. Taylor-Green vortex are characterized with even more complicated properties than those flows such as nonuniform flow line curvature, shear gradient. We study the effects of two parameters on the vesicle dynamics: the ratio of the interior fluid viscosity to that of the exterior one and the ratio of the shear forces on the vesicle to the membrane stiffness (characterized by the capillary number). Vesicle deformability nonlinearly depends on these parameters. Although the study is in 2D, our findings contribute to the wide spectrum of intriguing vesicle dynamics: Vesicles migrate inwards and eventually rotate at the vortex center if they are sufficiently deformable. If not, then they migrate away from the vortex center and travel across the periodic arrays of vortices. The outward migration of a vesicle is a new phenomenon in Taylor-Green vortex flow and has not been observed in any other flows so far. Such cross-streamline migration of deformable particles can be utilized in several applications such as microfluidics for cell separation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.044608DOI Listing

Publication Analysis

Top Keywords

vesicle dynamics
16
taylor-green vortex
12
vesicle
8
migration vesicle
8
vortex flow
8
vortex center
8
vortex
5
cross-stream migration
4
vesicle vortical
4
flows
4

Similar Publications

Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers.

Cell Biosci

January 2025

Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations.

View Article and Find Full Text PDF

Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane.

J Membr Biol

January 2025

School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.

Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization.

Plant Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!