Mechanically quenching a thin film of smectic-C liquid crystal results in the formation of a dense array of thousands of topological defects in the director field. The subsequent rapid coarsening of the film texture by the mutual annihilation of defects of opposite sign has been captured using high-speed, polarized light video microscopy. The temporal evolution of the texture has been characterized using an object-detection convolutional neural network to determine the defect locations, and a binary classification network customized to evaluate the brush orientation dynamics around the defects in order to determine their topological signs. At early times following the quench, inherent limits on the spatial resolution result in undercounting of the defects and deviations from expected behavior. At intermediate to late times, the observed annihilation dynamics scale in agreement with theoretical predictions and simulations of the 2D XY model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.107.044701 | DOI Listing |
Inorg Chem
December 2024
Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-CoO (C, N-CoO) dodecahedral particles enwrapped with MgInS nanosheets for enhanced N reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-CoO using a carbonization route followed by low-temperature calcination treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
Domain walls are quasi-one-dimensional topological defects in ferroic materials, which can harbor emergent functionalities. In the case of ferroelectric domain wall (FEDW) devices, an exciting frontier has emerged: memristor-based information storage and processing approaches. Memristor solid-state FEDW devices presented thus far, however predominantly utilize a complex network of domain walls to achieve the desired regulation of density and charge state.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.
Ordered media often support vortex structures with intriguing topological properties. Here, we investigate non-Abelian vortices in tetrahedral order using the mathematical formalism of colored links. Due to the generality of our methods, the results apply to all physical systems governed by tetrahedral order, such as the cyclic phase of spin-2 Bose-Einstein condensates and the tetrahedratic phase of bent-core nematic liquid crystals.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, 430074 Wuhan, China.
The frustrated honeycomb spin model can stabilize a subextensively degenerate spiral spin liquid with nontrivial topological excitations and defects, but its material realization remains rare. Here, we report the experimental realization of this model in the structurally disorder-free compound GdZnPO. Using a single-crystal sample, we find that spin-7/2 rare-earth Gd^{3+} ions form a honeycomb lattice with dominant second-nearest-neighbor antiferromagnetic and first-nearest-neighbor ferromagnetic couplings, along with easy-plane single-site anisotropy.
View Article and Find Full Text PDFACS Photonics
December 2024
School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Photonic topological insulators with boundary states present a robust solution to mitigate structure imperfections. By alteration of the virtual boundary between trivial and topological insulators, it is possible to bypass such defects. Coupled resonator optical waveguides (CROWs) have demonstrated their utility in realizing photonic topological insulators, as they exhibit distinct topological phases and band structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!