A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coprecipitation-based synchronous chlorantraniliprole encapsulation with chitosan: carrier-pesticide interactions and release behavior. | LitMetric

Background: Controlled-release pesticide formulations have emerged as a promising approach towards sustainable pest control. Herein, an environment-friendly formulation of insecticide chlorantraniliprole (CAP) was fabricated through a simple approach of coprecipitation-based synchronous encapsulation by chitosan (CTS), with carrier-pesticide interaction mechanism and release behavior investigated.

Results: The resulting CAP/CTS controlled-release formulation (CCF) showed a good loading content of 28.1% and a high encapsulation efficiency of 75.6%. Instrument determination in combination with molecular dynamics (MD) simulations displayed that the primary interactions between CAP and CTS were physical adsorption and complicated hydrogen (H)-bonds, which formed dominantly between NH in amides [or nitrogen (N) in ring structures] of CAP and hydroxyl (or amino) groups of CTS, as well as oxygen (O) in CAP with hydrogen in CTS or H O molecules. The in vitro release tests exhibited obvious pH/temperature sensitivity, with release dynamics following the first-order or Ritger-Peppas model. As the temperature increased, the CAP release process of the Ritger-Peppas model changed from Case-II to anomalous transport, and ultimately to a Fickian diffusion mechanism. The control effect against Plutella xylostella larvae also was evaluated by toxicity tests, where comparable efficacy of CCF to the commercial suspension concentrate was obtained.

Conclusion: The innovative, easy-to-prepare CCF can be used as a formulation with obvious pH/temperature sensitivity and good efficacy on target pests. This work contributes to the development of efficient and safe pesticide delivery systems, especially using the natural polymer materials as carriers. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.7559DOI Listing

Publication Analysis

Top Keywords

coprecipitation-based synchronous
8
encapsulation chitosan
8
release behavior
8
obvious ph/temperature
8
ph/temperature sensitivity
8
ritger-peppas model
8
release
5
cap
5
synchronous chlorantraniliprole
4
chlorantraniliprole encapsulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!