Background: B-raf inhibitors (BRAFi) are effective for BRAF-mutated papillary (PTC) and anaplastic (ATC) thyroid carcinomas, although acquired resistance impairs tumour cells' sensitivity and/or limits drug efficacy. Targeting metabolic vulnerabilities is emerging as powerful approach in cancer.
Methods: In silico analyses identified metabolic gene signatures and Hif-1α as glycolysis regulator in PTC. BRAF-mutated PTC, ATC and control thyroid cell lines were exposed to HIF1A siRNAs or chemical/drug treatments (CoCl, EGF, HGF, BRAFi, MEKi and diclofenac). Genes/proteins expression, glucose uptake, lactate quantification and viability assays were used to investigate the metabolic vulnerability of BRAF-mutated cells.
Results: A specific metabolic gene signature was identified as a hallmark of BRAF-mutated tumours, which display a glycolytic phenotype, characterised by enhanced glucose uptake, lactate efflux and increased expression of Hif-1α-modulated glycolytic genes. Indeed, Hif-1α stabilisation counteracts the inhibitory effects of BRAFi on these genes and on cell viability. Interestingly, targeting metabolic routes with BRAFi and diclofenac combination we could restrain the glycolytic phenotype and synergistically reduce tumour cells' viability.
Conclusion: The identification of a metabolic vulnerability of BRAF-mutated carcinomas and the capacity BRAFi and diclofenac combination to target metabolism open new therapeutic perspectives in maximising drug efficacy and reducing the onset of secondary resistance and drug-related toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338540 | PMC |
http://dx.doi.org/10.1038/s41416-023-02282-2 | DOI Listing |
J Transl Med
January 2025
Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.
Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.
Curr Biol
January 2025
Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:
Yeasts are a diverse group of unicellular fungi that have developed a wide array of phenotypes and traits over 400 million years of evolution. However, we still lack an understanding of the biological principles governing the range of cell morphologies, metabolic modes, and reproductive strategies yeasts display. In this study, we explored the relationship between cell morphology and metabolism in sixteen yeast strains across eleven species.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
Cells
January 2025
Department of Biology, Baylor University, Waco, TX 76798, USA.
Cells undergo significant epigenetic and phenotypic change during the epithelial-to-mesenchymal transition (EMT), a process observed in development, wound healing, and cancer metastasis. EMT confers several advantageous characteristics, including enhanced migration and invasion, resistance to cell death, and altered metabolism. In disease, these adaptations could be leveraged as therapeutic targets.
View Article and Find Full Text PDFCommun Biol
January 2025
San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele Milan, Milan, Italy.
Tregs for adoptive therapy are traditionally expanded ex vivo using high doses of IL-2. However, the final Treg product has limited survival once infused in patients, potentially affecting therapeutic effectiveness. Here, we tested a novel expansion protocol in which highly purified naïve Tregs were expanded with a combination of IL-7 and IL-15, in the absence of IL-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!