High-rate electrolysis of CO to C alcohols is of particular interest, but the performance remains far from the desired values to be economically feasible. Coupling gas diffusion electrode (GDE) and 3D nanostructured catalysts may improve the efficiency in a flow cell of CO electrolysis. Herein, we propose a route to prepare 3D Cu-chitosan (CS)-GDL electrode. The CS acts as a "transition layer" between Cu catalyst and the GDL. The highly interconnected network induces growth of 3D Cu film, and the as-prepared integrated structure facilitates rapid electrons transport and mitigates mass diffusion limitations in the electrolysis. At optimum conditions, the C Faradaic efficiency (FE) can reach 88.2% with a current density (geometrically normalized) as high as 900 mA cm at the potential of -0.87 V vs. reversible hydrogen electrode (RHE), of which the C alcohols selectivity is 51.4% with a partial current density of 462.6 mA cm, which is very efficient for C alcohols production. Experimental and theoretical study indicates that CS induces growth of 3D hexagonal prismatic Cu microrods with abundant Cu (111)/Cu (200) crystal faces, which are favorable for the alcohol pathway. Our work represents a novel example to design efficient GDEs for electrocatalytic CO reduction (CORR).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192345 | PMC |
http://dx.doi.org/10.1038/s41467-023-38524-3 | DOI Listing |
Org Biomol Chem
January 2025
Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
Electrochemical oxidative cross-dehydrogenative-coupling (CDC) is an ideal strategy to conduct the C3-alkoxylation of imidazo[1,2-]pyridine, but it remains a challenge owing to limitation imposed by the use of alkyl alcohols and carboxylic acids. Herein, we report a mild and efficient 2-electrode constant-potential electrolysis of imidazo[1,2-]pyridine with hexafluoroisopropanol (HFIP) to produce various imidazo[1,2-]pyridine HFIP ethers. Mechanistic studies indicated that the electrooxidation reaction might involve radical coupling and ionic reaction.
View Article and Find Full Text PDFGreen Chem
January 2025
Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China.
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China.
Electrochemical alcohol oxidation (EAO) represents an effective method for the production of high-value carbonyl products. However, its industrial viability is hindered by suboptimal efficiency stemming from low reaction rates. Here, we present a synergistic electrocatalysis approach that integrates an active electrode and aminoxyl radical to enhance the performance of EAO.
View Article and Find Full Text PDFSmall
December 2024
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900, Malaysia.
Developing bifunctional electrocatalysts from earth-abundant first-row transition metals for large-scale hydrogen production through water electrolysis is both promising and challenging. This study presents a ternary layered double hydroxide (LDH) as a bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and benzyl alcohol oxidation (BAOR). The synergy between 2D NiFeCo LDH and non-Ti-based NbCT MXene enhances electrochemical performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!