Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are ) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), ) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and ) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00055.2023DOI Listing

Publication Analysis

Top Keywords

stn beta
12
beta
9
oscillatory beta
8
beta dynamics
8
dynamics inform
8
parkinson's disease
8
beta synchrony
8
dbs
5
stn
5
inform biomarker-driven
4

Similar Publications

Subthalamic nucleus oscillations during facial emotion processing and apathy in Parkinson's disease.

J Affect Disord

January 2025

Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Background: Parkinson's disease (PD) is primarily characterized by motor symptoms, but patients also experience a relatively high prevalence of non-motor symptoms, including emotional and cognitive impairments. While the subthalamic nucleus (STN) is a common target for deep brain stimulation to treat motor symptoms in PD, its role in emotion processing is still under investigation. This study examines the subthalamic neural oscillatory activities during facial emotion processing and its association with affective characteristics.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

Sensing-based deep brain stimulation should optimally consider both the motor and neuropsychiatric domain to maximize quality of life of Parkinson's disease (PD) patients. Here we characterize the neurophysiological properties of the subthalamic nucleus (STN) in 69 PD patients using a newly established neurophysiological gradient metric and contextualize it with motor symptoms and apathy. We could evidence a STN power gradient that holds most of the spectral information between 5 and 30 Hz spanning along the dorsal-ventral axis.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is a movement disorder linked to the degeneration of dopamine-producing neurons, and treatments like Levodopa (L-dopa) and Subthalamic Deep Brain Stimulation (STN-DBS) have distinct effects on brain activity that need further study.
  • In a study involving 21 PD patients on L-dopa and 11 patients with STN-DBS, researchers used Magnetoencephalogram (MEG) data to analyze how these treatments impacted brain state dynamics through a statistical method called the Time-delay embedded Hidden Markov Model (TDE-HMM).
  • Results showed that L-dopa enhanced motor state and beta wave activity in the brain, correlating
View Article and Find Full Text PDF

Our aim was to evaluate the possible long-term cerebral deposition of amyloid-β in patients with PD treated with subthalamic nucleus deep brain stimulation (STN-DBS) and its possible influence on axial and cognitive variables. Consecutive PD patients treated with bilateral STN-DBS with a long-term follow-up were included. The amyloid-β deposition was evaluated postoperatively through an 18F-flutemetamol positron emission tomography (PET) study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!