Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep convolutional neural network (DCNN)-based noise reduction methods have been increasingly deployed in clinical CT. Accurate assessment of their spatial resolution properties is required. Spatial resolution is typically measured on physical phantoms, which may not represent the true performance of DCNN in patients as it is typically trained and tested with patient images and the generalizability of DNN to physical phantoms is questionable. In this work, we proposed a patient-data-based framework to measure the spatial resolution of DCNN methods, which involves lesion- and noise-insertion in projection domain, lesion ensemble averaging, and modulation transfer function measurement using an oversampled edge spread function from the cylindrical lesion signal. The impact of varying lesion contrast, dose levels, and CNN denoising strengths were investigated for a ResNet-based DCNN model trained using patient images. The spatial resolution degradation of DCNN reconstructions becomes more severe as the contrast or radiation dose decreased, or DCNN denoising strength increased. The measured 50%/10% MTF spatial frequencies of DCNN with highest denoising strength were (-500 HU:0.36/0.72 mm; -100 HU:0.32/0.65 mm; -50 HU:0.27/0.53 mm; -20 HU:0.18/0.36 mm; -10 HU:0.15/0.30 mm), while the 50%/10% MTF values of FBP were almost kept constant of 0.38/0.76 mm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187613 | PMC |
http://dx.doi.org/10.1117/12.2654972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!