AI Article Synopsis

Article Abstract

Using operando X-ray absorption spectroscopy in a continuous-flow microfluidic cell, we have investigated the nucleation of platinum nanoparticles from aqueous hexachloroplatinate solution in the presence of the reducing agent ethylene glycol. By adjusting flow rates in the microfluidic channel, we resolved the temporal evolution of the reaction system in the first few seconds, generating the time profiles for speciation, ligand exchange, and reduction of Pt. Detailed analysis of the X-ray absorption near-edge structure and extended X-ray absorption fine structure spectra with multivariate data analysis shows that at least two reaction intermediates are involved in the transformation of the precursor HPtCl to metallic platinum nanoparticles, including the formation of clusters with Pt-Pt bonding before complete reduction to Pt nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184164PMC
http://dx.doi.org/10.1021/acs.jpcc.2c08749DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
16
platinum nanoparticles
12
nucleation platinum
8
ethylene glycol
8
operando x-ray
8
absorption spectroscopy
8
microfluidic cell
8
intermediates nucleation
4
nanoparticles
4
nanoparticles reaction
4

Similar Publications

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Rhabdophane, CePO∙HO, nanoparticles were prepared by mechanochemical synthesis with different durations and thoroughly characterized by various characterization techniques. X-ray diffraction analysis showed that the optimal synthesis duration was 15 min, since, in this case, pure rhabdophane is obtained, without traces of contamination by the vessel material. The size of the obtained nanoparticles, as determined from high-resolution transmission electron microscopy images, was around 5 nm.

View Article and Find Full Text PDF

The findings highlight the potential for broadening the use of shell aggregates in construction applications. This research investigated the viability of incorporating milled seashells as fine sand replacements for natural calcareous sand in the production of self-compacting mortar. These results highlight a promising avenue for coastal industries to reduce waste while enhancing the durability of construction materials.

View Article and Find Full Text PDF

Synthesis of Nanocrystal-Embedded Bulk Metallic Glass Composites by a Combination of Mechanical Alloying and Vacuum Hot Pressing.

Materials (Basel)

January 2025

Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110-301, Taiwan.

Bulk metallic glasses (i.e., BMGs) have attracted a lot of research and development interest due to their unique properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!