A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net. | LitMetric

AI Article Synopsis

  • The study focuses on developing an automated framework to segment the optic nerve (ON) from surrounding cerebrospinal fluid (CSF) in MRI scans and measure its diameter and cross-sectional area.
  • Data was obtained from multiple retinoblastoma referral centers, comprising 40 high-resolution 3D T2-weighted MRI scans, and a 3D U-Net was utilized for segmentation assessment against manual measurements.
  • The results show high accuracy in segmentation with a Dice similarity coefficient of 0.84 and strong agreement with manual measurements, suggesting an effective tool for assessing optic nerve conditions.

Article Abstract

Purpose: Pathological conditions associated with the optic nerve (ON) can cause structural changes in the nerve. Quantifying these changes could provide further understanding of disease mechanisms. We aim to develop a framework that automatically segments the ON separately from its surrounding cerebrospinal fluid (CSF) on magnetic resonance imaging (MRI) and quantifies the diameter and cross-sectional area along the entire length of the nerve.

Approach: Multicenter data were obtained from retinoblastoma referral centers, providing a heterogeneous dataset of 40 high-resolution 3D T2-weighted MRI scans with manual ground truth delineations of both ONs. A 3D U-Net was used for ON segmentation, and performance was assessed in a tenfold cross-validation () and on a separate test-set () by measuring spatial, volumetric, and distance agreement with manual ground truths. Segmentations were used to quantify diameter and cross-sectional area along the length of the ON, using centerline extraction of tubular 3D surface models. Absolute agreement between automated and manual measurements was assessed by the intraclass correlation coefficient (ICC).

Results: The segmentation network achieved high performance, with a mean Dice similarity coefficient score of 0.84, median Hausdorff distance of 0.64 mm, and ICC of 0.95 on the test-set. The quantification method obtained acceptable correspondence to manual reference measurements with mean ICC values of 0.76 for the diameter and 0.71 for the cross-sectional area. Compared with other methods, our method precisely identifies the ON from surrounding CSF and accurately estimates its diameter along the nerve's centerline.

Conclusions: Our automated framework provides an objective method for ON assessment .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185127PMC
http://dx.doi.org/10.1117/1.JMI.10.3.034501DOI Listing

Publication Analysis

Top Keywords

cross-sectional area
12
optic nerve
8
diameter cross-sectional
8
manual ground
8
automatic segmentation
4
segmentation quantification
4
quantification optic
4
nerve mri
4
mri u-net
4
u-net purpose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: