Inhaled therapy confers key advantages for the treatment of topical pulmonary diseases and offers potential for systemic delivery of medicines. Dry powder inhalers (DPIs) are generally the preferred devices for pulmonary delivery due to improved stability and satisfactory patient compliance. However, the mechanisms governing drug powder dissolution and availability in the lung and poorly understood. Here, we report a new in vitro system to study epithelial absorption of inhaled dry powders in lung barrier models of the upper and lower airway. The system is based on a CULTEX® RFS (Radial Flow System) cell exposure module joined to a Vilnius aerosol generator and allows the coupling of drug dissolution and permeability assessments. The cellular models recapitulate the barrier morphology and function of healthy and diseased pulmonary epithelium and incorporate the mucosal barrier to enable the investigation of drug powder dissolution in biorelevant conditions. With this system, we found differences in permeability across the airway tree and pinpointed the impact of diseased barriers in paracellular drug transport. Furthermore, we identified a different rank order of permeability for compounds tested in solution or powder form. These results highlight the value of this in vitro drug aerosolization setup for use in research and development of inhaled medicines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2023.05.009DOI Listing

Publication Analysis

Top Keywords

dry powder
8
drug powder
8
powder dissolution
8
powder
5
drug
5
aerosol technology
4
technology mimic
4
mimic dry
4
powder inhalation
4
inhalation vitro
4

Similar Publications

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

Improving highway bases is the most crucial step that enhances pavements' performance and long-term durability. Lime and Portland cement are commonly used in soil stabilization endeavors. Nevertheless, the substantial carbon emissions associated with cement and lime manufacturing have led to a growing interest in researching environmentally friendly additives.

View Article and Find Full Text PDF

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

Introduction: The extraction of DNA is the basis of molecular biology research. The quality of the extracted DNA is one of the key factors for the success of molecular biology experiments.

Objective: To select a suitable DNA extraction method for Chinese medicinal herbs and seeds.

View Article and Find Full Text PDF

[Effect of enhanced silicate minerals weathering on carbon sequestration by plant-soil systems in rice fields].

Ying Yong Sheng Tai Xue Bao

October 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!