Preparation of microspheres containing Mesalazine referred to as 5-aminosalicylic acid (5-ASA) for colon targeting drug was carried out using the emulsion solvent evaporation technique. The formulation was based on 5-ASA as the active agent, sodium Alginate (SA) andEthylcellulose (EC) as encapsulating agents, with polyvinyl alcohol (PVA) as emulsifier. The effects ofthe following processing parameters, 5-ASA %, EC:SA ratio and stirring rate on the properties of the resulting products in the form microspheres were considered. The samples were characterized using Optical microscopy, SEM, PXRD, FTIR, TGA, and DTG. In vitro release of 5-ASA from the different batches of microspheres was tested in biologically simulated fluids, (gastric; SGF, pH 1.2 for 2 h), then (intestinal fluid SIF, pH 7.4for 12 h) at 37 °C. The release kinetic results have been treated mathematically relaying on Higuchi's and Korsmeyer-Peppas' models for drug liberation. DOE study was performed to evaluate the interactive effects of variables on the drug entrapment and microparticle sizes. Molecular chemical interactions in structures were optimized using DFT analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124894 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Zhengzhou University, College of Chemistry and Molecular Engineering, No.100 Science Avenue, Zhengzhou City, Henan Province P.R.China., Zhengzhou, Henan, CHINA.
We report a two-step approach to fabricate CsPbBr3 superstructures with strongly circularly polarized photoluminescence by self-assembly of nanoclusters on a substrate, followed by their annealing. In the first step, the nanoclusters self-assemble upon solvent evaporation, a process that forms mesoscopic superstructures whose geometrical arrangement at the µm-scale confers them optical chirality. In the second step, mild annealing of such superstructures induces the coalescence of the nanoclusters, accompanied by a continuous red shift of the photoluminescence up to 530 nm, with preservation of the µm-scale wires bundles and the chiral properties of the sample (glum = 0.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States.
The functional performance of a particulate thin film depends greatly on the particle distribution that forms during drying. In situ methods for monitoring the impact of different processing parameters on the distribution of particles currently require expensive and specialized equipment. This work addresses this gap by miniaturizing a geophysical prospecting method to thin-film applications.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea.
Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.
Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.
Pharmaceutics
December 2024
Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain.
This work investigates the sustainable reuse of expanded polystyrene (EPS) waste through a multi-cycle physical recycling process involving dissolution in acetone and subsequent manufacturing via Direct Ink Write (DIW) 3D printing and casting. Morphology and mechanical properties were evaluated as a function of the manufacturing technique and number of dissolution cycles. Morphological analysis revealed that casted specimens better replicated the target geometry, while voids in 3D-printed specimens aligned with the printing direction due to rapid solvent evaporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!