Cell-based relay delivery strategy in biomedical applications.

Adv Drug Deliv Rev

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States. Electronic address:

Published: July 2023

The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2023.114871DOI Listing

Publication Analysis

Top Keywords

relay delivery
24
delivery strategy
8
delivery strategies
8
delivery
6
relay
5
cell-based relay
4
strategy biomedical
4
biomedical applications
4
applications relay
4
strategy two-step
4

Similar Publications

Leptomeningeal metastatic disease (LMD), encompassing entities of 'meningeal carcinomatosis', neoplastic meningitis' and 'leukaemic/lymphomatous meningitis', arises secondary to the metastatic dissemination of cancer cells from extracranial and certain intracranial malignancies into the leptomeninges and cerebrospinal fluid. The clinical burden of LMD has been increasing secondary to more sensitive diagnostics, aggressive local therapies for discrete brain metastases, and improved management of extracranial disease with targeted and immunotherapeutic agents, resulting in improved survival. However, owing to drug delivery challenges and the unique microenvironment of LMD, novel therapies against systemic disease have not yet translated into improved outcomes for these patients.

View Article and Find Full Text PDF

Background: Blood transfusions are the most common procedure performed in American hospitals. The steps required for blood product delivery are often misunderstood by providers, leading to numerous phone calls to the blood bank requesting order status. Distracting calls can lengthen turnaround time, especially during blood product or staff shortages.

View Article and Find Full Text PDF

The brain has evolved mechanisms to dynamically modify blood flow, enabling the timely delivery of energy substrates in response to local metabolic demands. Several such neurovascular coupling (NVC) mechanisms have been identified, but the vascular signal transduction and transmission mechanisms that enable dilation of penetrating arterioles (PAs) remote from sites of increased neuronal activity are unclear. Given the exponential relationship between vessel diameter and blood flow, tight control of arteriole membrane potential and diameter is a crucial aspect of NVC.

View Article and Find Full Text PDF

Importance: Neoadjuvant therapy (NT) is an increasingly used treatment strategy for patients with localized pancreatic ductal adenocarcinoma (PDAC). Little research has been conducted on cancer care delivery during NT, and the standards for optimal delivery of NT have not been defined.

Objective: To develop consensus best practices for delivering NT to patients with localized PDAC.

View Article and Find Full Text PDF

Enhanced lion swarm optimization and elliptic curve cryptography scheme for secure cluster head selection and malware detection in IoT-WSN.

Sci Rep

December 2024

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India.

Wireless Sensor Networks present a significant issue for data routing because of the potential use of obtaining data from far locations with greater energy efficiency. Networks have become essential to modern concepts of the Internet of Things. The primary foundation for supporting diverse service-centric applications has continued to be the sensor node activity of both sensing phenomena in their local environs and relaying their results to centralized Base Stations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!