Arsenic contamination in a mining area is a potential threat to the local population. In the context of one-health, biological pollution in contaminated soil should be known and understandable. This study was conducted to clarify the effects of amendments on arsenic species and potential threat factors (e.g., arsenic-related genes (AMGs), antibiotic resistance genes (ARGs) and heavy-metal resistance genes (MRGs)). Ten groups (control (CK), T1, T2, T3, T4, T5, T6, T7, T8, and T9) were set up by adding different ratio of organic fertilizer, biochar, hydroxyapatite and plant ash. The maize crop was grown in each treatment. Compared with CK, the bioavailability of arsenic was reduced by 16.2%-71.8% in the rhizosphere soil treatments, and 22.4%-69.2% in the bulk soil treatments, except for T8. The component 2 (C2), component 3 (C3) and component 5 (C5) of dissolved organic matter (DOM) increased by 22.6%-72.6%, 16.8%-38.1%, 18.4%-37.1%, respectively, relative to CK in rhizosphere soil. A total of 17 AMGs, 713 AGRs and 492 MRGs were detected in remediated soil. The humidification of DOM might directly correlate with MRGs in both soils, while it was influenced directly on ARGs in bulk soil. This may be caused by the rhizosphere effect, which affects the interaction between microbial functional genes and DOM. These findings provide a theoretical basis for regulating soil ecosystem function from the perspective of arsenic contaminated soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118118 | DOI Listing |
PLoS One
January 2025
Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Disease Prevention, Qingdao, Shandong, China.
Background: It is crucial to comprehend the interplay between air pollution and meteorological conditions in relation to population health within the framework of "dual-carbon" targets. The purpose of this study was to investigate the impact of intricate environmental factors, encompassing both meteorological conditions and atmospheric pollutants, on respiratory disease (RD) mortality in Qingdao, a representative coastal city in China.
Methods: The RD mortality cases were collected from the Chronic Disease Surveillance Monitoring System in Qingdao during Jan 1st, 2014 and Dec 31st, 2020.
PLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFEnviron Technol
February 2025
Technology Institute, University of Passo Fundo, Passo Fundo, RS, Brazil.
Food waste offers a potential source for bioethanol production, but productivity depends on the chemical composition of the raw materials and the processes involved. However, assessment of the environmental sustainability of these processes is often absent and can be carried out using the Life Cycle Assessment (LCA) methodology. This study aimed to perform an LCA on bioethanol production from mixtures of different wastes, including tubers, fruits, and processed foods, focusing on the gate-to-gate phase.
View Article and Find Full Text PDFEnviron Technol
February 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China.
Dealing with oil spills is urgent, and bioaugmentation is a low-cost and environmentally friendly method. However, little research has been done on the remediation effect of bioaugmentation in oil-polluted environments with bottom seawater microorganisms. This work constructed the bottom seawater (S) group and surface seawater environment (T) group to study the oil degradation ability and the microbial community successions tendency with the function of integrated bacterial consortium.
View Article and Find Full Text PDFEnviron Technol
February 2025
PGEAGRI/CCET - Center of Exact Sciences and Technology, State University of Western of Paraná - UNIOESTE, Cascavel, Brazil.
The deammonification process is an efficient alternative to remove nitrogen from wastewater with a low carbon/nitrogen ratio. However, the reactor configuration and operational factors pose challenges for applications in treatment systems to remove nitrogen from municipal and industrial wastewater on a large scale. To address this gap, this study evaluated a new deammonification strategy using a single-stage membrane aerated biofilm reactor (MABR), operated with continuous flow, under different hydraulic retention times (HRT) in the post-treatment of poultry slaughterhouse wastewater with a low nitrogen load, similar to domestic wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!