Cell-membrane-coated biomimetic nanoparticles (NPs) have attracted great attention due to their prolonged circulation time, immune escape mechanisms and homotypic targeting properties. Biomimetic nanosystems from different types of cell -membranes (CMs) can perform increasingly complex tasks in dynamic biological environments thanks to specific proteins and other properties inherited from the source cells. Herein, we coated doxorubicin (DOX)-loaded reduction-sensitive chitosan (CS) NPs with 4T1 cancer cell -membranes (CCMs), red blood cell -membranes (RBCMs) and hybrid erythrocyte-cancer membranes (RBC-4T1CMs) to enhance the delivery of DOX to breast cancer cells. The physicochemical properties (size, zeta potential and morphology) of the resulting RBC@DOX/CS-NPs, 4T1@DOX/CS-NPs and RBC-4T1@DOX/CS-NPs, as well as their cytotoxic effect and cellular NP uptake in vitro were thoroughly characterized. The anti-cancer therapeutic efficacy of the NPs was evaluated using the orthotopic 4T1 breast cancer model in vivo. The experimental results showed that DOX/CS-NPs had a DOX-loading capacity of 71.76 ± 0.87 %, and that coating of DOX/CS-NPs with 4T1CM significantly increased the NP uptake and cytotoxic effect in breast cancer cells. Interestingly, by optimizing the ratio of RBCMs:4T1CMs, it was possible to increase the homotypic targeting properties towards breast cancer cells. Moreover, in vivo tumor studies showed that compared to control DOX/CS-NPs and free DOX, both 4T1@DOX/CS-NPs and RBC@DOX/CS-NPs significantly inhibited tumor growth and metastasis. However, the effect of 4T1@DOX/CS-NPs was more prominent. Moreover, CM-coating reduced the uptake of NPs by macrophages and led to rapid clearance from the liver and lungs in vivo, compared to control NPs. Our results suggest that specific self-recognition to source cells resulting in homotypic targeting increased the uptake and the cytotoxic capacity of 4T1@DOX/CS-NPs by breast cancer cells in vitro and in vivo. In conclusion, tumor-disguised CM-coated DOX/CS-NPs exhibited tumor homotypic targeting and anti-cancer properties, and were superior over targeting with RBC-CM or RBC-4T1 hybrid membranes, suggesting that the presence of 4T1-CM is critical for treatment outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213456DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
homotypic targeting
16
cancer cells
16
cell -membranes
12
targeting properties
8
source cells
8
increased uptake
8
uptake cytotoxic
8
compared control
8
cancer
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!