Optogenetics has been used to regulate astrocyte activity and modulate neuronal function after brain injury. Activated astrocytes regulate blood-brain barrier functions and are thereby involved in brain repair. However, the effect and molecular mechanism of optogenetic-activated astrocytes on the change in barrier function in ischemic stroke remain obscure. In this study, adult male GFAP-ChR2-EYFP transgenic Sprague-Dawley rats were stimulated by optogenetics at 24, 36, 48, and 60 h after photothrombotic stroke to activate ipsilateral cortical astrocytes. The effects of activated astrocytes on barrier integrity and the underlying mechanisms were explored using immunostaining, western blotting, RT-qPCR, and shRNA interference. Neurobehavioral tests were performed to evaluate therapeutic efficacy. The results demonstrated that IgG leakage, gap formation of tight junction proteins, and matrix metallopeptidase 2 expression were reduced after optogenetic activation of astrocytes (p<0.05). Moreover, photo-stimulation of astrocytes protected neurons against apoptosis and improved neurobehavioral outcomes in stroke rats compared to controls (p<0.05). Notably, interleukin-10 expression in optogenetic-activated astrocytes significantly increased after ischemic stroke in rats. Inhibition of interleukin-10 in astrocytes compromised the protective effects of optogenetic-activated astrocytes (p<0.05). We found for the first time that interleukin-10 derived from optogenetic-activated astrocytes protected blood-brain barrier integrity by decreasing the activity of matrix metallopeptidase 2 and attenuated neuronal apoptosis, which provided a novel therapeutic approach and target in the acute stage of ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529757 | PMC |
http://dx.doi.org/10.14336/AD.2023.0226 | DOI Listing |
Alzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Deficits in interneuron and cholinergic circuits are noted in AD pathology, yet the precise mechanisms of their contribution to cognitive decline in the disease remain elusive. Neuronal Pentraxin 2 (NPTX2), a sensitive marker for synaptic activity and AD progression, is an immediate early gene expressed by pyramidal neurons that functions at excitatory synapses on Parvalbumin interneurons (PV-IN) to cluster AMPA receptors and strengthen circuit inhibition. NPTX2 is later shed from some synapses into the cerebrospinal fluid (CSF), where reduced NPTX2 levels inversely correlate with hippocampal volume and cognitive performance in individuals with AD/MCI.
View Article and Find Full Text PDFNat Neurosci
January 2025
Brain Research Institute, University of Zurich, Zurich, Switzerland.
Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive.
View Article and Find Full Text PDFChemMedChem
January 2025
Department of Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
New concepts to treat eye diseases have emerged that elegantly combine unnatural light exposure with chemical biology approaches to achieve superior cellular specificity and, as a result, improvement of visual function. Historically, light exposure without further molecular eye treatment has offered limited success including photocoagulation to halt pathological blood vessel growth or low light exposure to stimulate retinal cell viability. To add cellular specificity to such treatments, researchers have introduced various biological or chemical light-sensing molecules and combined those with light exposure.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
Nitrogen limitations in the grape must be the main cause of stuck fermentations during the winemaking process. In , a genetic segment known as region A, which harbors 12 protein-coding genes, was acquired horizontally from a phylogenetically distant yeast species. This region is mainly present in the genome of wine yeast strains, carrying genes that have been associated with nitrogen utilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!