AI Article Synopsis

  • Cells must sense and adapt to changes in their mechanical environment, with the cytoskeleton and mitochondria playing key roles in force generation and energy maintenance.
  • The review explores how mitochondrial dynamics interact with cytoskeletal components and other organelles to facilitate these processes.
  • It emphasizes the need for more research into how this mechanotransduction system works, highlighting its potential as a target for future therapies.

Article Abstract

Cells are constantly exposed to various mechanical environments; therefore, it is important that they are able to sense and adapt to changes. It is known that the cytoskeleton plays a critical role in mediating and generating extra- and intracellular forces and that mitochondrial dynamics are crucial for maintaining energy homeostasis. Nevertheless, the mechanisms by which cells integrate mechanosensing, mechanotransduction, and metabolic reprogramming remain poorly understood. In this review, we first discuss the interaction between mitochondrial dynamics and cytoskeletal components, followed by the annotation of membranous organelles intimately related to mitochondrial dynamic events. Finally, we discuss the evidence supporting the participation of mitochondria in mechanotransduction and corresponding alterations in cellular energy conditions. Notable advances in bioenergetics and biomechanics suggest that the mechanotransduction system composed of mitochondria, the cytoskeletal system, and membranous organelles is regulated through mitochondrial dynamics, which may be a promising target for further investigation and precision therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529762PMC
http://dx.doi.org/10.14336/AD.2023.0201DOI Listing

Publication Analysis

Top Keywords

mitochondrial dynamics
16
membranous organelles
8
mitochondrial
5
dynamics working
4
working cytoskeleton
4
cytoskeleton intracellular
4
intracellular organelles
4
organelles mediate
4
mechanotransduction
4
mediate mechanotransduction
4

Similar Publications

Prostate cancer has garnered much importance in recent years due to its rising incidence and mortality among men worldwide. The ineffectiveness of existing therapies and adverse events associated with conventional treatment have led patients to turn towards traditional medicine for the management of prostate cancer. Cinnamomum zeylanicum bark essential oil (CZEO) possesses promising anticancer properties, yet the exact mechanism of action of CZEO for the management of prostate cancer remains unclear.

View Article and Find Full Text PDF

Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies.

View Article and Find Full Text PDF

Aim: Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus.

View Article and Find Full Text PDF

Enhanced mitochondrial function and delivery from adipose-derived stem cell spheres via the EZH2-H3K27me3-PPARγ pathway for advanced therapy.

Stem Cell Res Ther

March 2025

Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan.

Background: Microenvironmental alterations induce significant genetic and epigenetic changes in stem cells. Mitochondria, essential for regenerative capabilities, provide the necessary energy for stem cell function. However, the specific roles of histone modifications and mitochondrial dynamics in human adipose-derived stem cells (ASCs) during morphological transformations remain poorly understood.

View Article and Find Full Text PDF

A lipid droplet-targeted probe for imaging of lipid metabolism disorders during mitochondrial myopathy.

Talanta

March 2025

State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China. Electronic address:

Lipid metabolism is closely related to various biological processes in cells. The accumulation of Lipid droplets (LDs) is a typical manifestation of certain metabolic diseases, such as mitochondrial myopathy, which shows a significant increase in LDs. The accumulation of LDs can exacerbate the progression of disease, and lysosomes selectively degrade LDs to cope with this phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!