1,10-Phenanthroline (PHN) is a nitrogen-containing heterocyclic organic compound that is widely used in a variety of applications, including chemosensors, biological studies, and pharmaceuticals, which promotes its use as an organic inhibitor to reduce corrosion of steel in acidic solution. In this regard, the inhibition ability of PHN was examined for carbon steel (C48) in a 1.0 M HCl environment by performing electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), mass loss, and thermometric/kinetic. Additionally, scanning electron microscopy (SEM) was used to examine the surface morphology of C48 immersed in 1.0 M HCl protected with our inhibitor. According to the PDP tests, increasing the PHN concentration resulted in an improvement in corrosion inhibition efficiency. Besides, the maximum corrosion inhibition efficiency is about 90% at 328 K. Furthermore, the PDP assessments demonstrated that PHN functions as a mixed-type inhibitor. The adsorption analysis reveals that our title molecule mechanism is due to physical-chemical adsorption, as predicted by the Frumkin, Temkin, Freundlich, and Langmuir isotherms. The SEM technique exhibited that the corrosion barrier occurs due to the adsorption of the PHN compound through the metal/1.0 M HCl interface. In addition, the computational investigations based on a quantum calculation using density functional theory (DFT), reactivity (QTAIM, ELF, and LOL), and molecular-scale by Monte Carlo (MC) simulations confirmed the experimental results by providing further insight into the mode of adsorption of PHN on the metal surface, thus forming a protective film against corrosion on the C48 surface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-27582-1DOI Listing

Publication Analysis

Top Keywords

corrosion inhibition
12
carbon steel
8
10 m hcl
8
inhibition efficiency
8
adsorption phn
8
corrosion
6
phn
6
comprehensive assessment
4
assessment carbon
4
steel corrosion
4

Similar Publications

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

A point mutation in a like gene in enhances the anticorrosion activity.

Appl Environ Microbiol

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.

The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film.

View Article and Find Full Text PDF

One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.

View Article and Find Full Text PDF

The objective of the study was to synthesize tetrazole molecules featuring nitro groups positioned at the para and meta locations. We aimed to assess their effectiveness in inhibiting corrosion of mild steel in a 1 M HCl solution at 298 K. Tetrazoles with 2,5-disubstitution were created using [3 + 2] cycloaddition and N-alkylation techniques, with a particular emphasis on synthesizing molecules that contain nitro groups.

View Article and Find Full Text PDF

Minimizing Zn Loss Through Dual Regulation for Reversible Zinc Anode Beyond 90% Utilization Ratio.

Small

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Center of Energy Storage Materials and Technology, Nanjing University, Nanjing, 210093, China.

Large-scale energy storage devices experience explosive development in response to the increasing energy crisis. Zinc ion batteries featuring low cost, high safe, and environment friendly are considered promising candidates for next-generation energy storage devices. However, their practical application suffers from the limited anode lifespan under a high zinc utilization ratio, which can be attributed to aggravated Zn loss caused by zinc conversion reactions and "dead" Zn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!