Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates.

Photochem Photobiol Sci

Instituto de Biología Molecular y Celular de Rosario (UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.

Published: August 2023

AI Article Synopsis

  • * The redox state of photosynthetic machinery influences plant responses to environmental stimuli, making real-time detection essential for understanding and engineering plant metabolism.
  • * Genetically encoded fluorescent biosensors show promise in monitoring key redox components in photosynthesis, although few have been applied in plants due to challenges specific to chloroplasts.

Article Abstract

Oxygenic photosynthesis involves light and dark phases. In the light phase, photosynthetic electron transport provides reducing power and energy to support the carbon assimilation process. It also contributes signals to defensive, repair, and metabolic pathways critical for plant growth and survival. The redox state of components of the photosynthetic machinery and associated routes determines the extent and direction of plant responses to environmental and developmental stimuli, and therefore, their space- and time-resolved detection in planta becomes critical to understand and engineer plant metabolism. Until recently, studies in living systems have been hampered by the inadequacy of disruptive analytical methods. Genetically encoded indicators based on fluorescent proteins provide new opportunities to illuminate these important issues. We summarize here information about available biosensors designed to monitor the levels and redox state of various components of the light reactions, including NADP(H), glutathione, thioredoxin, and reactive oxygen species. Comparatively few probes have been used in plants, and their application to chloroplasts poses still additional challenges. We discuss advantages and limitations of biosensors based on different principles and propose rationales for the design of novel probes to estimate the NADP(H) and ferredoxin/flavodoxin redox poise, as examples of the exciting questions that could be addressed by further development of these tools. Genetically encoded fluorescent biosensors are remarkable tools to monitor the levels and/or redox state of components of the photosynthetic light reactions and accessory pathways. Reducing equivalents generated at the photosynthetic electron transport chain in the form of NADPH and reduced ferredoxin (FD) are used in central metabolism, regulation, and detoxification of reactive oxygen species (ROS). Redox components of these pathways whose levels and/or redox status have been imaged in plants using biosensors are highlighted in green (NADPH, glutathione, HO, thioredoxins). Analytes with available biosensors not tried in plants are shown in pink (NADP). Finally, redox shuttles with no existing biosensors are circled in light blue. APX, ASC peroxidase; ASC, ascorbate; DHA, dehydroascorbate; DHAR, DHA reductase; FNR, FD-NADP+ reductase; FTR, FD-TRX reductase; GPX, glutathione peroxidase; GR, glutathione reductase; GSH, reduced glutathione; GSSG, oxidized glutathione; MDA, monodehydroascorbate; MDAR, MDA reductase; NTRC, NADPH-TRX reductase C; OAA, oxaloacetate; PRX, peroxiredoxin; PSI, photosystem I; PSII: photosystem II; SOD, superoxide dismutase; TRX, thioredoxin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-023-00425-1DOI Listing

Publication Analysis

Top Keywords

light reactions
12
genetically encoded
12
redox state
12
state components
12
photosynthetic electron
8
electron transport
8
components photosynthetic
8
monitor levels
8
nadph glutathione
8
reactive oxygen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!